Bounds on Universal and Non Universal New Physics Effects from $f\bar{f}$ Production at LEP2

M.Beccaria^{*}, F. M. Renard, S. Spagnolo, C. Verzegnassi

hep-ph/0002101, to appear in PRD

Phys. Lett. B475:157-167 (2000)

Phys. Lett. B448:129-142 (1999)

Introduction and Outline

- Z-peak subtracted representation $(f \neq e)$ of $e^+e^- \rightarrow f\bar{f}$ at LEP2 energies
- Universal (AGC, TC) and non Universal (CT, ED) New Physics models
- LEP2 combined data analysis without Bhabha $d\sigma/d\cos heta$
- Z-peak representation of Bhabha scattering $e^+e^- \rightarrow e^+e^-$
- LEP2 combined data analysis **including** OPAL results on Bhabha

Experimental Results: LEP2 $f\bar{f}$ **Combination** LEP2FF/99-01 + single experiments

LEP runs during 1995-99

year	1995		1996		1997	1998	1999	
E(GeV)	130.2	136.2	161.3	172.1	182.7	188.6	192	196

- At the Z peak: combination in terms of pseudo observables
- **Off** the Z-peak: averaged σ_5 , $\sigma_{\mu, au}$, $A_{FB,\mu, au}$ at 183, 189 GeV
- Definition of the $f\bar{f}$ signal
 - 1: (L3, OPAL) $\sqrt{s'}$ is the mass of the s-channel propagator, $\sqrt{s'/s}$ > 0.85, ISR-FSR γ interference subtracted
 - 2: (ALEPH, DELPHI) $\sqrt{s'}$ is the $f\bar{f}$ invariant mass for dileptons. $\sqrt{s'/s} > 0.85$, ISR-FSR included
- full 4π angular acceptance extrapolation

- Theoretical error estimated from ZFITTER, TOPAZ0, KK discrepancies 0.2% $(q\bar{q})$, 0.7% $(l\bar{l})$, 0.003 (A_l)
- Experimental measures

cms energy	quantity	average	SM	error %	deviation $\%$
183 GeV	σ_5	24.54± 0.43 pb	24.20 pb	1.8	1.4
	σ_{μ}	$3.44\pm$ 0.14 pb	3.45 pb	4.1	-0.29
	$\sigma_{ au}$	$3.43\pm$ 0.18 pb	3.45 pb	5.2	-0.58
	$A_{FB,\mu}$	0.547 ± 0.034	0.576	6.2	-5
	$A_{FB, au}$	0.615 ± 0.044	0.576	7.2	6.8
189 GeV	σ_5	22.38± 0.25 pb	22.16 pb	1.1	0.99
	σ_{μ}	$3.193\pm$ 0.083 pb	3.207 pb	2.6	-0.44
	$\sigma_{ au}$	$3.135\pm$ 0.102 pb	3.207 pb	3.3	-2.2
	$A_{FB,\mu}$	0.562 ± 0.022	0.569	3.9	-1.2
	$A_{FB, au}$	0.597 ± 0.027	0.569	4.5	4.9

General Features of New Physics Effects off the Z Peak

- ${\bf At}$ the Z peak
 - Peskin Takeuchi (S, T) or Altarelli Barbieri ε_1 , ε_3
 - New Physics is inherently **universal**
 - box diagrams can be neglected
 - s channel γ exchange can be neglected
- Off the Z peak (LEP2, LC, $\mu^+\mu^-$): Generic New Physics
 - Complicated dependence on the kinematical variables (s, θ)
 - box diagrams and s channel γ exchange are important
- Off the Z peak: Universal New Physics
 - Only 3 functions $\delta_{\gamma}, \delta_s, \delta_Z$ of the energy (constants ?)

The Z-peak Subtracted Representation $(f \neq e)$ F.M. Renard and C. Verzegnassi, PRD52, 1369 (1995), PRD53, 1290 (1996)

- The general $e^+e^- \rightarrow f\bar{f}$ $(f \neq e)$ scattering amplitude at one loop is the sum of an **effective photon** and an **effective** Z **amplitude** with couplings $g_{Vj}^{\gamma}(q^2, \theta)$, $g_{Vj}^{Z}(q^2, \theta)$, $g_{Aj}^{Z}(q^2, \theta)$ (j is the initial electron j = e or the final fermion $j = f \neq e$)

$$\mathcal{A}(q^{2},\theta) = \frac{i}{q^{2}} \bar{v} \gamma^{\mu} g_{Ve}^{(\gamma)}(q^{2},\theta) u \cdot \bar{u} \gamma_{\mu} g_{Vf}^{(\gamma)}(q^{2},\theta) v + \frac{i}{q^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \cdot \bar{v} \gamma^{\mu} [g_{Ve}^{(Z)}(q^{2},\theta) - g_{Ae}^{(Z)}(q^{2},\theta) \gamma^{5}] u \cdot \bar{u} \gamma_{\mu} [g_{Vf}^{(Z)}(q^{2},\theta) - g_{Af}^{(Z)}(q^{2},\theta) \gamma^{5}] v$$

- Effective couplings ($ilde{\Delta}_{\alpha,ef}$, R_{ef} and V_{ef} are finite and gauge invariant)

$$\begin{split} g_{Ve}^{\gamma}(q^{2},\theta) &= \sqrt{4\pi\alpha(0)} \ Q_{e}[1 + \frac{1}{2}\tilde{\Delta}_{\alpha,ef}(q^{2},\theta)] \\ g_{Vf}^{\gamma}(q^{2},\theta) &= \sqrt{4\pi\alpha(0)} \ Q_{f}[1 + \frac{1}{2}\tilde{\Delta}_{\alpha,ef}(q^{2},\theta)] \\ g_{Ae}^{\gamma}(q^{2},\theta) &= g_{Af}^{\gamma}(q^{2},\theta) = 0 \\ g_{Ve}^{Z} &= \gamma_{e}^{\frac{1}{2}} I_{3e} \ \tilde{v}_{e}[1 - \frac{1}{2}R_{ef}(q^{2},\theta) - \frac{4\tilde{s}_{e}\tilde{c}_{e}}{\tilde{v}_{e}}|Q_{f}|V_{ef}^{\gamma Z}(q^{2},\theta)] \\ g_{Vf}^{Z}(q^{2},\theta) &= \gamma_{f}^{\frac{1}{2}} I_{3f} \ \tilde{v}_{f}[1 - \frac{1}{2}R_{ef}(q^{2},\theta) - \frac{4\tilde{s}_{e}\tilde{c}_{e}}{\tilde{v}_{f}}|Q_{f}|V_{ef}^{Z\gamma}(q^{2},\theta)] \\ g_{Ae}^{Z}(q^{2},\theta) &= \gamma_{e}^{\frac{1}{2}} I_{3e}[1 - \frac{1}{2}R_{ef}(q^{2},\theta)] \\ g_{Ae}^{Z}(q^{2},\theta) &= \gamma_{e}^{\frac{1}{2}} I_{3e}[1 - \frac{1}{2}R_{ef}(q^{2},\theta)] \\ g_{Af}^{Z}(q^{2},\theta) &= \gamma_{f}^{\frac{1}{2}} I_{3f}[1 - \frac{1}{2}R_{ef}(q^{2},\theta)] \end{split}$$

with the Z-peak inputs

$$\gamma_j^{\frac{1}{2}} = \left[\frac{48\pi\Gamma_j}{N_j M_Z (1+\tilde{v}_j^2)}\right]^{\frac{1}{2}} = \frac{e}{2sc} + \cdots$$

$$\tilde{v}_j = 1 - 4|Q_j|\tilde{s}_j^2$$

 $\tilde{s}_j^2 = 1 - \tilde{c}_j^2$ is the **weak effective angle** measured through the forward-backward or polarization asymmetries in the final channel j, $\tilde{s}_e \equiv \tilde{s}_\mu \equiv \tilde{s}_\tau$

- The quantities $\tilde{\Delta}_{\alpha,ef}(q^2,\theta)$, $R_{ef}(q^2,\theta)$, $V_{ef}^{\gamma Z}(q^2,\theta)$, $V_{ef}^{Z\gamma}(q^2,\theta)$ contain all the q^2 , θ dependent parts of the scattering amplitude due to SM or NP at one-loop.
- They are **finite**, **gauge independent** combinations of self-energies, vertices and boxes

- For an additional four fermion amplitude with Lorentz structure

$$\bar{v}(e^+)\gamma^{\mu}[a(q^2,\theta) - b(q^2,\theta)\gamma^5]u(e^-) \cdot \bar{u}(f)\gamma_{\mu}[c(q^2,\theta) - d(q^2,\theta)\gamma^5]v(f)$$

and a, b, c, d representing $\mathcal{O}(\alpha)$ effects, we have

$$\begin{split} \tilde{\Delta}_{\alpha,ef}(q^{2},\theta) &= \mathbf{q}^{2} \frac{[a(q^{2},\theta) - b(q^{2},\theta)\tilde{v}_{e}][c(q^{2},\theta) - d(q^{2},\theta)\tilde{v}_{f}]}{e^{2}Q_{e}Q_{f}} \\ R_{ef}(q^{2},\theta) &= -(\mathbf{q}^{2} - \mathbf{M}_{\mathbf{Z}}^{2}) \frac{4\tilde{s}_{e}^{2}\tilde{c}_{e}^{2}b(q^{2},\theta)d(q^{2},\theta)}{e^{2}I_{3e}I_{3f}} \\ V_{ef}^{\gamma Z}(q^{2},\theta) &= -(\mathbf{q}^{2} - \mathbf{M}_{\mathbf{Z}}^{2}) \frac{[a(q^{2},\theta) - b(q^{2},\theta)\tilde{v}_{e}]2\tilde{s}_{e}\tilde{c}_{e}d(q^{2},\theta)}{e^{2}Q_{e}I_{3f}} \\ V_{ef}^{Z\gamma}(q^{2},\theta) &= -(\mathbf{q}^{2} - \mathbf{M}_{\mathbf{Z}}^{2}) \frac{[c(q^{2},\theta) - d(q^{2},\theta)\tilde{v}_{f}]2\tilde{s}_{e}\tilde{c}_{e}b(q^{2},\theta)}{e^{2}Q_{f}I_{3e}} \end{split}$$

Differential Unpolarized Cross Sections

$$\frac{d\sigma_{lf}}{d\cos\theta} = \frac{4\pi}{3} N_f q^2 \{ \frac{3}{8} (1 + \cos^2\theta) \mathbf{U}_{11} + \frac{3}{4} \cos\theta \mathbf{U}_{12} \}$$
 where (apart from α redefinition)

$$U_{11} = \gamma \gamma + (\gamma Z + ZZ)(1 + \mathbf{A}_{\mathbf{e}}\mathbf{A}_{\mathbf{f}} + \mathbf{A}_{\mathbf{e}} + \mathbf{A}_{\mathbf{f}})$$
$$U_{12} = \gamma Z(1 + \mathbf{A}_{\mathbf{e}}\mathbf{A}_{\mathbf{f}}) + ZZ(1 + \mathbf{A}_{\mathbf{e}}\mathbf{A}_{\mathbf{f}} + \mathbf{A}_{\mathbf{e}} + \mathbf{A}_{\mathbf{f}})$$

$$U_{11} = \frac{\alpha^2(0)Q_f^2}{q^4} [1 + 2\tilde{\Delta}_{\alpha,lf}(q^2,\theta)] + 2[\alpha(0)|Q_f|] \frac{q^2 - M_Z^2}{q^2((q^2 - M_Z^2)^2 + M_Z^2\Gamma_Z^2)} [\frac{3\Gamma_l}{M_Z}]^{1/2} [\frac{3\Gamma_f}{N_f M_Z}]^{1/2} \frac{\tilde{v}_l \tilde{v}_f}{(1 + \tilde{v}_l^2)^{1/2}(1 + \tilde{v}_f^2)^{1/2}} \times [1 + \tilde{\Delta}_{\alpha,lf}(q^2,\theta) - R_{lf}(q^2,\theta) - 4\tilde{s}_l \tilde{c}_l \{\frac{1}{\tilde{v}_l} V_{lf}^{\gamma Z}(q^2,\theta) + \frac{|Q_f|}{\tilde{v}_f} V_{lf}^{Z\gamma}(q^2,\theta)\}]$$

Trieste, April 2000

$$+\frac{[\frac{3\Gamma_{l}}{M_{Z}}][\frac{3\Gamma_{f}}{N_{f}M_{Z}}]}{(q^{2}-M_{Z}^{2})^{2}+M_{Z}^{2}\Gamma_{Z}^{2}}$$

$$\times[1-2R_{lf}(q^{2},\theta)-8\tilde{s}_{l}\tilde{c}_{l}\{\frac{\tilde{v}_{l}}{1+\tilde{v}_{l}^{2}}V_{lf}^{\gamma Z}(q^{2},\theta)+\frac{\tilde{v}_{f}|Q_{f}|}{(1+\tilde{v}_{f}^{2})}V_{lf}^{Z\gamma}(q^{2},\theta)\}]$$

$$\begin{split} U_{12} &= 2 \left[\alpha(0) |Q_f| \right] \frac{q^2 - M_Z^2}{q^2 ((q^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2)} \left[\frac{3\Gamma_l}{M_Z} \right]^{1/2} \left[\frac{3\Gamma_f}{N_f M_Z} \right]^{1/2} \frac{1}{(1 + \tilde{v}_l^2)^{1/2} (1 + \tilde{v}_f^2)^{1/2}} \\ &\times \left[1 + \tilde{\Delta}_{\alpha, lf}(q^2, \theta) - R_{lf}(q^2, \theta) \right] \\ &+ \frac{\left[\frac{3\Gamma_l}{M_Z} \right] \left[\frac{3\Gamma_f}{N_f M_Z} \right]}{(q^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \left[\frac{4\tilde{v}_l \tilde{v}_f}{(1 + \tilde{v}_l^2) (1 + \tilde{v}_f^2)} \right] \\ &\times \left[1 - 2R_{lf}(q^2, \theta) - 4\tilde{s}_l \tilde{c}_l \left\{ \frac{1}{\tilde{v}_l} V_{lf}^{\gamma Z}(q^2, \theta) + \frac{|Q_f|}{\tilde{v}_f} V_{lf}^{Z\gamma}(q^2, \theta) \right\} \right] \end{split}$$

New Physics Contributions

– For a general one loop New Physics effect the form factors $\tilde{\Delta}_{\alpha,lf}$, R_{lf} , $V_{lf}^{\gamma Z}$ and $V_{lf}^{Z\gamma}$ are shifted

$$\tilde{\Delta}_{\alpha,lf}(q^2,\theta) \to \tilde{\Delta}_{\alpha,lf}(q^2,\theta) + \tilde{\Delta}_{\alpha,lf}^{NP}(q^2,\theta)$$

- Explicit θ dependent terms (e.g. from SUSY boxes) introduce **new** parameters (# of terms $\cos^{N} \theta$)
- Simplifications occur for Universal New Physics
 - independent on the final fermion family f
 - independent on θ

$$ilde{\Delta}^{UNP}_{lpha}(q^2) \quad R^{UNP}(q^2) \quad V^{UNP}(q^2)$$

- If the q^2 dependence is **factorized**, then measurements at different q^2 can be combined

Definition of the Three δ Parameters

- By construction

$$\tilde{\Delta}_{\alpha}^{UNP}(0) = R^{UNP}(M_Z^2) = V^{UNP}(M_Z^2) = 0$$

– We therefore introduce the three dimensionless functions $\delta_{z,s,\gamma}(q^2)$

$$R^{UNP}(q^2) = \frac{(q^2 - M_Z^2)}{M_Z^2} \,\delta_z \quad V^{UNP}(q^2) = \frac{(q^2 - M_Z^2)}{M_Z^2} \,\delta_s \quad \tilde{\Delta}^{UNP}_{\alpha}(q^2) = \frac{q^2}{M_Z^2} \,\delta_\gamma$$

- For large New Physics scales ($\Lambda^2 >> q^2$), we find typically $\delta_i(q^2) = (q^2)^{m_i} \hat{\delta}_i(q^2)$ and, in some cases, $\hat{\delta}_i(q^2) \simeq \hat{\delta}_i(0)$
- Non Universality can occur by a θ dependence, a final flavour dependence, both.

Summary Table of Some Common New Physics Models

- AGC and TC are Universal
- CT are Universal in each flavour (e.g. $e^+e^- \rightarrow l\bar{l}$)
- For ED and SUSY, δ are functions of $\theta,$ not constants
- For SUSY, the condition $\Lambda^2 >> q^2$ is not interesting.

Model	Universal	heta	f	m
AGC	Х			
ТС	Х			
СТ			Х	
ED		Х	Х	1
(SUSY)		Х	Х	?

Universal New Physics I: Anomalous gauge couplings A. Blondel, F. M. Renard, L. Trentadue and C. Verzegnassi PRD 54 (1996)

dim=6, $SU(2) \times U(1)$ and CP conserving operators, linear Higgs (Hagiwara et al., PRD 48) (1993)

	W^2	Z^2	AZ	A^2	W^2Z	W^2A	W^4	$W^2 Z^2$	W^2ZA	$W^2 A^2$	Z^4
DW	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	
DB		Х	Х	Х							
BW		х	х	Х	х	х					
Φ ,1		Х									
WWW					х	х	х	Х	Х	х	
W					х	Х	х	Х	Х		
В					x	Х					

$$e^+e^- \rightarrow f\bar{f}$$
 versus $e^+e^- \rightarrow W^+W^-$ at LEP2

– The effect of the "tree level" operators parametrized by f_{DW} , f_{DB} , f_{BW} and $f_{\Phi,1}$ receives contributions from the "one loop" operators, e.g.

$$f_{DW}^{r} = f_{DW} - \frac{1}{192\pi^{2}} \left(f_{W} \log \frac{\Lambda^{2}}{M_{W}^{2}} + \frac{f_{B} - f_{W}}{4} \log \frac{M_{H}^{2}}{M_{W}^{2}} \right)$$
$$f_{DB}^{r} = f_{DB} - \frac{1}{192\pi^{2}} \left(f_{B} \log \frac{\Lambda^{2}}{M_{W}^{2}} - \frac{f_{B} - f_{W}}{4} \log \frac{M_{H}^{2}}{M_{W}^{2}} \right)$$

- The couplings f_{DW} , f_{DB} , f_{BW} and $f_{\Phi,1}$ are well constrained by amplitudes with external fermions at LEP1 and LEP2. Results from a 500 pb^{-1} @ 175 GeV conventional 4 parameters fit

– If they are excluded from $e^+e^- \to f\bar{f}$ then we can study

$$\frac{i\mathcal{L}}{g_{WWV}} = g_1^V V_\mu (W^{-\mu\nu} W_\nu^+ - W^{+\mu\nu} W_\nu^-) + \kappa_V V^{\mu\nu} W_\mu^- W^+ \nu + \frac{\lambda_V}{M_W^2} V^{\mu\nu} W_\nu^{+\rho} W_{\rho\mu}^-$$

with $(SU(2) \times U(1)$ gives $g_1^{\gamma} = 1$, $\lambda_Z = \lambda_{\gamma} = \lambda$ and trades κ_Z)

$$\Delta \kappa_{\gamma} = (f_B + f_W) \frac{M_W^2}{2\Lambda^2}$$
$$\Delta g_1^Z = f_W \frac{M_Z^2}{2\Lambda^2}$$
$$\lambda = f_{WWW} \frac{3M_W^2 g^2}{2\Lambda^2}$$

LEP2 experimental results (C. Sbarra, Moriond 2000)

$$\Delta \kappa_{\gamma} = 0.021^{+0.063}_{-0.059}, \qquad \Delta g_1^Z = -0.024^{+0.024}_{-0.024}, \qquad \lambda_{\gamma} = -0.016^{+0.026}_{-0.026}$$

- Z-peak subtracted analysis: 2 parameters, f_{DW} and f_{DB} ; they give q^2 dependent contributions.
- Expression of the δ parameters in terms of f_{DW} and f_{DB}

$$\delta_{z} = 8\pi \alpha \frac{M_{Z}^{2}}{\Lambda^{2}} \left(\frac{\tilde{c}_{l}^{2}}{\tilde{s}_{l}^{2}} f_{DW} + \frac{\tilde{s}_{l}^{2}}{\tilde{c}_{l}^{2}} f_{DB} \right), \quad \delta_{s} = 8\pi \alpha \frac{M_{Z}^{2}}{\Lambda^{2}} \left(\frac{\tilde{c}_{l}}{\tilde{s}_{l}} f_{DW} - \frac{\tilde{s}_{l}}{\tilde{c}_{l}} f_{DB} \right),$$
$$\delta_{\gamma} = -8\pi \alpha \frac{M_{Z}^{2}}{\Lambda^{2}} \left(f_{DW} + f_{DB} \right),$$

They satisfy the linear constraint:

$$\delta_z - \frac{1 - 2\tilde{s}_l^2}{\tilde{s}_l \tilde{c}_l} \delta_s + \delta_\gamma = 0$$

Universal New Physics II: Models of Technicolor type

R. S. Chivukula, F. M. Renard and C. Verzegnassi PRD 547 (1998)

- Strongly coupled Vector and Axial resonances. 2 parameters (ratios F/M^2)
- The Z-peak scheme leads naturally to the use of non perturbative dispersion relations
- δ parameters

$$\delta_{z} = M_{Z}^{2} \frac{\pi \alpha}{\tilde{s}_{l}^{2} \tilde{c}_{l}^{2}} \left((1 - 2\tilde{s}_{l}^{2})^{2} \frac{F_{V}^{2}}{M_{V}^{4}} + \frac{F_{A}^{2}}{M_{A}^{4}} \right),$$

$$\delta_{s} = M_{Z}^{2} \frac{2\pi \alpha}{\tilde{s}_{l} \tilde{c}_{l}} (1 - 2\tilde{s}_{l}^{2}) \frac{F_{V}^{2}}{M_{V}^{4}}, \quad \delta_{\gamma} = -4\pi \alpha M_{Z}^{2} \frac{F_{V}^{2}}{M_{V}^{4}}.$$

Again, we have a linear constraint in the $(\delta_z, \delta_s, \delta_\gamma)$ space:

$$\delta_s = -\left(\frac{1-2\tilde{s}_l^2}{2\tilde{s}_l\tilde{c}_l}\right)\delta_\gamma \qquad \delta_{z,s} > 0 \qquad \delta_\gamma < 0$$

Non Universal New Physics I: Contact Interactions E. Eichten, K. Lane, M. Peskin, PRL 50 (1983)

- Composite models or any generic virtual NP effect with a high intrinsic scale (e.g., higher vector boson exchanges, satisfying chirality conservation)
- Interaction Lagrangian for $(i\bar{i} \rightarrow f\bar{f})$

$$\mathcal{L} = k_{if} \frac{4\pi}{\Lambda^2} \{ \eta_{LL} (\bar{\Psi}_L^i \gamma^\mu \Psi_L^i) (\bar{\Psi}_L^f \gamma_\mu \Psi_L^f) + \eta_{RR} (\bar{\Psi}_R^i \gamma^\mu \Psi_R^i) (\bar{\Psi}_R^f \gamma_\mu \Psi_R^f)$$

+
$$\eta_{RL} (\bar{\Psi}_R^i \gamma^\mu \Psi_R^i) (\bar{\Psi}_L^f \gamma_\mu \Psi_L^f) + \eta_{LR} (\bar{\Psi}_L^i \gamma^\mu \Psi_L^i) (\bar{\Psi}_R^f \gamma_\mu \Psi_R^f) \}$$

where

 $k_{if} = \frac{1}{2}$ for $i \equiv f$, $k_{if} = 1$ otherwise; $\Psi_L = (1 - \gamma^5)/2 \Psi$, $\Psi_R = (1 + \gamma^5)/2 \Psi$; η_{ab} are phase factors defining the chirality structure of the interaction.

- Specific applications can be considered for pure chiral cases (ij) = LL or RR or LR or RL (keeping only one $\eta_{ij} = \pm 1$), as well as for mixed cases like VV ($\eta_{LL} = \eta_{RR} = \eta_{RL} = \eta_{LR} = \pm 1$), AA ($\eta_{LL} = \eta_{RR} = -\eta_{RL} = -\eta_{LR} = \pm 1$), VA ($\eta_{LL} = -\eta_{RR} = \eta_{RL} = \eta_{RR} = -\eta_{LR} = \pm 1$), AV ($\eta_{LL} = -\eta_{RR} = -\eta_{RL} = \eta_{LR} = \pm 1$);

– δ parameters

$$\begin{split} \delta_{\gamma,ef} &= \frac{\pi M_Z^2}{e^2 Q_e Q_f \Lambda^2} [\eta_{LL} (1-v_e)(1-v_f) + \eta_{RR} (1+v_e)(1+v_f) \\ &\quad + \eta_{RL} (1+v_e)(1-v_f) + \eta_{LR} (1-v_e)(1+v_f)] \\ \delta_{Z,ef} &= -\frac{4 \tilde{s}_e^2 \tilde{c}_e^2 \pi M_Z^2}{e^2 I_{3e} I_{3f} \Lambda^2} [\eta_{LL} + \eta_{RR} - \eta_{RL} - \eta_{LR}] \\ \delta_{s,ef}^{\gamma Z} &= -\frac{2 \tilde{s}_e \tilde{c}_e \pi M_Z^2}{e^2 Q_e I_{3f} \Lambda^2} [\eta_{LL} (1-v_e) - \eta_{RR} (1+v_e) + \eta_{RL} (1+v_e) - \eta_{LR} (1-v_e)] \\ \delta_{s,ef}^{Z\gamma} &= -\frac{2 \tilde{s}_e \tilde{c}_e \pi M_Z^2}{e^2 Q_f I_{3e} \Lambda^2} [\eta_{LL} (1-v_f) - \eta_{RR} (1+v_f) - \eta_{RL} (1-v_f) + \eta_{LR} (1+v_f)] \end{split}$$

– Since there is a single parameter, the bounds on $\delta_{Z,s,\gamma}$ translates into a bound on the New Physics coupling

Non Universal New Physics II: Extra Dimensions

N. Arkani-Hamed, S. Dimopoulos, G. Dvali, PLB 429 (1998), PLB 436 (1998)

– Arkani-Hamed, Dimopoulos, Dvali model ($M_{Pl} \sim 10^{19} \text{GeV}, M_S \sim 10^2 \text{GeV}$)

$$M_{Pl}^2 \sim M_S^{n+2} R^n$$

- n = 1, $R \sim$ solar system; n = 2, R = 0.1 - 1mm
- Coupling to KK modes

$$rac{1}{M_{Pl}} imes \# ext{ modes} \sim rac{1}{M_S}$$

- Lorentz structure of the matrix element

$$\frac{\lambda}{\Lambda^4} [\bar{e}\gamma^{\mu} e\bar{f}\gamma_{\mu} f(p_2 - p_1).(p_4 - p_3) - \bar{e}\gamma^{\mu} e\bar{f}\gamma^{\nu} f(p_2 - p_1)_{\nu}(p_4 - p_3)_{\mu}]$$

– δ parameters

$$\begin{split} \delta_{z,ef} &= -(\frac{\lambda M_Z^2 q^2}{\Lambda^4}) \frac{4\tilde{s}_l^2 \tilde{c}_l^2}{e^2 I_{3e} I_{3f}} \\ \delta_{s,ef}^{\gamma Z} &= (\frac{\lambda M_Z^2 q^2}{\Lambda^4}) \frac{2\tilde{s}_l \tilde{c}_l \tilde{v}_l}{e^2 Q_e I_{3f}} \\ \delta_{s,ef}^{Z\gamma} &= (\frac{\lambda M_Z^2 q^2}{\Lambda^4}) \frac{2\tilde{s}_l \tilde{c}_l \tilde{v}_f}{e^2 Q_f I_{3e}} \\ \delta_{\gamma,ef} &= (\frac{\lambda M_Z^2 q^2}{\Lambda^4}) \frac{(\tilde{v}_l \tilde{v}_f - 2\cos\theta)}{e^2 Q_e Q_f} \end{split}$$

- The q^2 factor is purely kinematical and a consequence of the higher dimension of the interaction Lagrangian
- The term term proportional to $cos\theta$ gives a contribution in the *t*-channel with large interference effects with the standard photon exchange amplitude.

Corrections to the (non-Bhabha) Observables

- cross section for muon (or tau) production σ_{μ} ; forward-backward asymmetry $A_{FB,\mu}$; cross section for five "light" (u, d, s, c, b) quark production σ_5 ; cross section for ($b\bar{b}$) production σ_b ; forward-backward asymmetry $A_{FB,b}$.
- $\mathcal{O}_i = \mathcal{O}_i^{SM} [1 + d\mathcal{O}_i^{UNP} / \mathcal{O}_i^{SM}]$

$$\frac{d\sigma_{\mu}^{UNP}}{\sigma_{\mu}} = -1.43 \ \delta_{Z} - 1.09 \ \delta_{s} + 7.85 \ \delta_{\gamma}$$

$$\frac{dA_{FB,\mu}^{UNP}}{A_{FB,\mu}} = -2.39 \ \delta_{Z} - 0.19 \ \delta_{s} - 3.02 \ \delta_{\gamma}$$

$$\frac{d\sigma_{5}^{UNP}}{\sigma_{5}} = -4.28 \ \delta_{Z} - 5.28 \ \delta_{s} + 4.22 \ \delta_{\gamma}$$

Combination of LEP2 Experiments

EPS-HEP99, $\sqrt{s} = 189 \text{ GeV}$

 $\Delta\chi^2=1 \,\, {\rm contours}$

Role of the Different Observables: AGC case

 σ_{μ} , σ_{5} nearly orthogonal, $A_{FB,\mu}$ not important

Is Bhabha an additional **independent** and **precise** measurement ?

Trieste, April 2000

Role of the Different Observables: TC case

The additional constraint on TC is $\delta_{z,s}>0,~\delta_{\gamma}<0$ but the C.L. here is low: 34%

Trieste, April 2000

Expected Final LEP2 Data

 $\sqrt{s}=183,189~{\rm GeV}$

+ simulated 400 pb^{-1} @ 200 ${\rm GeV}$

Summary of the Bounds on δ for Universal New Physics

	DATA	δ_z		δ_s		δ_γ	
	189	$-0.0027^{+0.036}_{-0.036}$		$-0.0020\substack{+0.031\\-0.031}$		$-0.0026\substack{+0.0094\\-0.0094}$	
δ	183-189	$-0.0011\substack{+0.031\\-0.031}$		$-0.0033\substack{+0.027\\-0.027}$		$-0.0022\substack{+0.0081\\-0.0081}$	
	Final	\pm 0.016	1.9	\pm 0.014	1.9	± 0.0043	1.9
	189	$-0.0014^{+0.0037}_{-0.0037}$		$-0.0031\substack{+0.0074\\-0.0074}$		$-0.0026\substack{+0.0082\\-0.0082}$	
AGC	183-189	$-0.0015\substack{+0.0032\\-0.0032}$		$-0.0029\substack{+0.0064\\-0.0064}$		$-0.0022\substack{+0.0071\\-0.0071}$	
	Final	± 0.0016	2	± 0.0033	1.9	± 0.0037	1.9
	189	$-0.0061^{+0.015}_{-0.015}$		$0.0014\substack{+0.0047\\-0.0047}$		$-0.0021\substack{-0.0075\\-0.0075}$	
ТС	183-189	$-0.0055\substack{+0.013\\-0.013}$		$0.0010\substack{+0.0041\\-0.0041}$		$-0.0016\substack{+0.0064\\-0.0064}$	
	Final	± 0.0066	2	± 0.0021	2	± 0.0034	1.9

Summary of the Bounds on Non Universal New Physics Present Data

Λ_{CT} (TeV)	All	no σ_l	no σ_5	no $A_{FB,l}$
LL	2.9	1.8	2.8	2.9
RR	2.7	1.6	2.7	2.7
VV	4.7	2.7	4.6	4.6
AA	4.1	3.8	4.0	3.3
Λ_{ED} (TeV)	All	no σ_l	no σ_5	no $A_{FB,l}$
	0.78	0.78	0.78	0.25

Small AA contribution to δ_{γ} (~ $v_l v_f$)

ED effect $\sim v_e^2 - 2\cos\theta \sim \cos\theta$

Λ_{CT} (TeV)		All		no σ_l		no σ_5		no $A_{FB,l}$
LL RR VV AA	2.9 2.7 4.7 4.1	4.0 3.7 6.4 5.5	1.8 1.6 2.7 3.8	2.5 2.1 3.6 5.0	2.8 2.7 4.6 4.0	3.9 3.7 6.3 5.2	2.9 2.7 4.6 3.3	3.9 3.7 6.3 4.7
Λ_{ED} (TeV)		All		no σ_l		no σ_5		no $A_{FB,l}$
	0.78	0.89	0.78	0.89	0.78	0.89	0.25	0.30

Summary of the Bounds on Non Universal New Physics (Optimistic) Future Data

35-40% improvement for CT

15% improvement for ED

$Z\operatorname{-peak}$ Representation of the Bhabha Process

- The scattering amplitude at one loop is the sum of two (s-channel and t-channel) components

$$\mathcal{A}_{ee} = \mathcal{A}_s(q^2, \theta) + \mathcal{A}_t(q^2, \theta)$$

– Definition of effective couplings in the t-channel component

$$\mathcal{A}_{t}(q^{2},\theta) = \frac{i}{t} \bar{v} \gamma^{\mu} \bar{g}_{Ve}^{(\gamma)}(q^{2},\theta) v \cdot \bar{u} \gamma_{\mu} \bar{g}_{Vf}^{(\gamma)}(q^{2},\theta) + \frac{i}{t - M_{Z}^{2}}.$$
$$\bar{v} \gamma^{\mu} [\bar{g}_{Ve}^{(Z)}(q^{2},\theta) - \bar{g}_{Ae}^{(Z)}(q^{2},\theta) \gamma^{5}] \cdot \bar{u} \gamma_{\mu} [\bar{g}_{Vf}^{(Z)}(q^{2},\theta) - \bar{g}_{Af}^{(Z)}(q^{2},\theta) \gamma^{5}] u$$

- t-channel effective couplings

$$\bar{g}_{Ve}^{\gamma}(q^{2},\theta) = \sqrt{4\pi\alpha(0)} \ Q_{e}[1 + \frac{1}{2}\overline{\Delta}_{\alpha}(q^{2},\theta)]$$

$$\bar{g}_{Ve}^{Z}(q^{2},\theta) = \gamma_{e}^{\frac{1}{2}} \ I_{3e} \ \tilde{v}_{e}[1 - \frac{1}{2}\overline{R}(q^{2},\theta) - \frac{4\tilde{s}_{e}\tilde{c}_{e}}{\tilde{v}_{e}}|Q_{f}|\overline{V}(q^{2},\theta)]$$

$$\bar{g}_{Ae}^{Z}(q^{2},\theta) = \gamma_{e}^{\frac{1}{2}} \ I_{3e}[1 - \frac{1}{2}\overline{R}(q^{2},\theta)]$$
(1)

- The new functions $\overline{\Delta}_{\alpha}(q^2, \theta)$, $\overline{R}(q^2, \theta)$ and $\overline{V}(q^2, \theta)$ are obtained from the *s*-channel by crossing $s \longleftrightarrow t$

$$q^2 \longrightarrow t = -\frac{q^2}{2}(1 - \cos\theta) \qquad \cos\theta \longrightarrow 1 + \frac{2q^2}{t}$$

A rotated copy of the same diagrams occur in $e^+e^- \rightarrow e^+e^-$

Trieste, April 2000

– General expression of the polarized Bhabha differential cross section (P and P' are the initial e^- , e^+ polarizations)

$$\frac{d\sigma}{d\cos\theta} = (1 - PP')\frac{d\sigma^1}{d\cos\theta} + \underbrace{(1 + PP')\frac{d\sigma^2}{d\cos\theta}}_{\text{t channel only}} + (P' - P)\frac{d\sigma^P}{d\cos\theta}$$

- unpolarized angular distribution: relevant at LEP2

$$\frac{d\sigma}{dcos\theta} \equiv \frac{d\sigma^1}{dcos\theta} + \frac{d\sigma^2}{dcos\theta}$$

– LL-RR and LL+RR polarization asymmetries: relevant at LC

$$A_{LR}(q^{2},\theta) = \left[\frac{d\sigma^{P}}{d\cos\theta}\right] / \left[\frac{d\sigma}{d\cos\theta}\right] \qquad A_{||}(q^{2},\theta) = \left[\frac{d\sigma^{2}}{d\cos\theta}\right] / \left[\frac{d\sigma}{d\cos\theta}\right]$$

Parametrization of New Physics Effects in the Bhabha Observables

- General New Physics \implies duplication of the parameters
- Universal New Physics \implies the same set of three numbers
- General definition of δ , including contributions to Bhabha

$$R^{UNP}(z) = \frac{(z - M_Z^2)}{M_Z^2} \,\delta_Z$$

$$V^{UNP}(z) = \frac{(z - M_Z^2)}{M_Z^2} \,\delta_s$$
$$\tilde{\Delta}^{UNP}_{\alpha}(z) = \frac{z}{M_Z^2} \,\delta_\gamma$$

where z = s, t

Definition of the Observables for the Combined LEP2 + OPAL-Bhabha Fit

- Non Bhabha: σ_{μ} , σ_{5} , $A_{FB,\mu}$ @ $\sqrt{s} = 183, 189~{
 m GeV}$
- Bhabha: unpolarized differential cross section from OPAL data (CERN-EP/99-097)
 - c.m. energy 189 GeV
 - 9 angular bins $-0.9 < \cos \theta_{e^-} < 0.9$
 - $\mathcal{L} = 180 \text{ pb}^{-1}$
 - acol cut $< 10^{o}$ to discard radiative events
- For the non Bhabha observables, $\varepsilon_{th} < \varepsilon_{exp}$ is < 1%, dominated by large QED corrections.
- For the Bhabha cross section, $\varepsilon_{th} \simeq 2\%$ larger than the experimental error in the very forward cone.

Bounds on δ Present Data

	without Bhabha	with all Bhabha	forward	backward
δ_Z	-0.001 ± 0.031	0.0064 ± 0.028	0.006 ± 0.03	0.0011 ± 0.029
δ_s	-0.004 ± 0.032	-0.0087 ± 0.031	-0.0084 ± 0.032	-0.0057 ± 0.031
δ_γ	-0.0022 ± 0.0083	0.00019 ± 0.0074	0.00014 ± 0.0075	-0.0019 ± 0.0081

Not a spectacular improvement

Mainly in δ_γ and from the forward cone data

Bounds on δ (Optimistic) Future Data including 400 pb^{-1} @ 200 GeV

		without Bhabha		all Bhabha, 2% th.		with all Bhabha
δ_Z	0.031	0.014	0.028	0.012	0.03	0.012
δ_s	0.032	0.015	0.031	0.013	0.032	0.013
δ_γ	0.0083	0.0038	0.0074	0.0034	0.0075	0.0028

For AGC these results convert into

$$\Delta f_{DW}| < 0.43, \qquad |\Delta f_{DB}| < 2.1$$

in agreement with Hagiwara et al.

Trieste, April 2000

Bounds on δ : projected ellipses Present Data

Bounds on δ : projected ellipses (Optimistic) Future Data

Bounds on Non Universal New Physics: Extra Dimensions Present data analysis L3, OPAL

- L3, 180 pb^{-1} at 189 GeV
- Bhabha in the cone $(44^o, 136^0)$

Process	syst %	$M_S +$	M_S-	MC
ZZ	10	0.77	0.76	EXCALIBUR
WW	4	0.79	0.68	KORALW
$\gamma\gamma$	1	0.79	0.80	
Bosons		0.89	0.82	
$\mu\mu$	2.4	0.69 (0.60)	0.56 (0.63)	KORALZ, ZFITTER
au au	3.5	0.54 (0.63)	0.58 (0.50)	
q ar q	1.4	0.49	0.49	
ee	3	0.98	0.84	TOPAZ0
Fermions		1	0.84	
B + F		1.07	0.87	

	without Bhabha	with all Bhabha	forward	backward
Λ_{LL}	10-9.9	11-9.2	11-9.2	10-9.8
Λ_{RR}	7.7-12	8.7-10	8.7-10	7.8-12
Λ_{LR}	6.5-9.2	16-7.8	14-7.3	8.2-9.2
Λ_{RL}	7.2-15	12-9.7	11-9.5	8.3-13
Λ_{VV}	13-20	17-16	16-16	13-20
Λ_{AA}	16-13	14-14	14-14	15-13
Λ_{AV}	17-8.7	17-8.7	17-8.7	17-8.7
Λ_{VA}	4-3.3	4.2-3.2	4.2-3.2	4-3.3
Λ_{ED}	0.69-0.75	0.82-2.2	0.8-1.9	0.77-0.9

Bounds on Non Universal New Physics Present Data LEP2 Combined + OPAL

ED: tt > st > ss

Bounds on Non Universal New Physics Luminosity Dependence: Λ_{CT}

Luminosity Dependence: Λ_{ED}

		without Bhabha		all Bhabha, 2% th.	$\varepsilon_{th} = 0$
Λ_{LL}	10-9.9	15	11-9.2	15	16
Λ_{RR}	7.7-12	13	8.7-10	14	15
Λ_{LR}	6.5-9.2	11	16-7.8	16	18
Λ_{RL}	7.2-15	13	12-9.7	17	18
Λ_{VV}	13-20	22	17-16	24	27
Λ_{AA}	16-13	21	14-14	21	22
Λ_{AV}	17-8.7	16	17-8.7	16	16
Λ_{VA}	4-3.3	5.2	4.2-3.2	5.2	5.3
Λ_{ED}	0.69-0.75	0.89	0.82-2.2	1.2	1.4

Bounds on Non Universal New Physics (Optimistic) Future Data

Conclusions

- Simple parametrization of New Physics Effects in $e^+e^- \to f\bar{f}$ at present and future energies
- Exploitation of the Z-peak inputs in an automatic fashion for conventional combined observables and also for Bhabha
- Important Role of Bhabha scattering as a complementary measurement (such as A_{LR} at NLC) and as a probe for certain New Physics models