Searching for signals from the Dark Universe: recent results from DAMA

> 90% of the Universe is dark
What is the nature of our Universe?
What is the future?

Roma2/Roma/Beijing

R. BERNABEI Trieste, April 27, 2000

The WIMPs

Relic CDM particles from primordial Universe

- ° in thermal equilibrium in the early stage of Universe
- ° non relativistic at decoupling time

$$^{\circ}$$
 < $\sigma_{ann} \cdot v$ >~ $\frac{10^{-26}}{\Omega_{WIMP}h^2}$ cm³s⁻¹ $\rightarrow \sigma_{ordinary\ matter}$ ~ σ_{weak}

° expected flux:
$$\Phi \sim 10^7 \cdot \frac{1 GeV}{M_W} \text{ cm}^{-2} \text{ s}^{-1}$$

$$(0.2 < \rho_{halo} < 0.7 \text{ GeV cm}^{-3})$$

 $^{\circ}$ form a dissipationless gas trapped in the gravitational field of the Galaxy (v ~ 10^{-3} c)

.... searching for a candidate

- $^{\circ}$ neutral, stable (or with $\tau \sim$ age of Universe) and massive particle
 - → the most favoured candidate ...

.... the x

[°] MSSM +SUGRA

[°] R-parity conserved → the LSP is stable

[°] LSP=χ

The χ

° spin 1/2 - Majorana LSP

$$\chi = a_1 \widetilde{\gamma} + a_2 \widetilde{Z} + a_3 \widetilde{H}_1 + a_4 \widetilde{H}_2$$

o relevant diagrams for cross section on ordinary matter:

a) coherent contribution:

higgsino-Zino mixture: σ∝A2

- b) spin-dependent contribution: $higgsino\ component:\ \sigma \propto \lambda^2 J(J+1)$
- c) spin and coherent contribution

The WIMP wind

Direct detection mainly

o by elastic scattering on target-nuclei

Energy spectrum

$$\stackrel{\circ}{\frac{dR}{dE_R}} = N_T \frac{\rho_W}{M_W} \cdot \int_{V_{min}}^{V_{max}} v_f(v|v_{\oplus}) \frac{\sigma_{point-like}}{E_{R_{max}}} F^2(E_R) dv$$

with $v_{min} = \sqrt{\frac{M_{nucleus}E_R}{2m_{red}^2}}$; $E_{R_{max}} = \frac{2m_{red}^2v^2}{M_{nucleus}}$; v_{\oplus} = Earth velocity in the galactic frame

WIMP velocity distribution = ...

Maxwellian with cut-off at v_{escape} ...

and $v_0 = \sqrt{\frac{2}{3}} v_{r,m,s} = 220$ km /s ...

measured quantity:

E_R in the keV region (quasi-exponential behaviour)

Usual approach

+ bu The limit of The used experimental and Theoretical essumptions and of The proper "hendling" of all The insolved ucertainties.

Intrinsic uncertainties when comparing exclusion plots from different experiments

- the same carefull knowledge and control of the "physical" energy threshold and of technical quantities such as quenching factors, sensitive volume, efficiencies, energy calibrations,?
- stability with time of all these quantities (also for expts measuring only counting rates) at the same level of accuracy?
- the same carefull knowledge and control of the quantities involved in recoil/background discrimination and related efficiencies? use of Montecarlo subtraction ???
- uncertainties in the astrophysical parameters
- o uncertainties in the form factors
- uncertainties in different contributions from possible systematics and their proper "handling", mainly when different techniques are used

etc. etc. etc. etc.

- to compare experiment with different target nuclei scaling laws to cross section on proton are necessary
- no discovery pontentiality (also in case of discrimination concurrent processes from neutron, end-range alphas, etc. are undistinguishable and reliable ways to handle that do not exist!)

1

a signature is needed!

DAMA exclusion plots 90% C.L.

A signature is needed!

 Comparison of the results from different experiments.

(SI: $R \propto A^2$; SD: $R \propto C\lambda^2 J(J+1)$; $\langle Er \rangle = f(M_N)$ for each M_W)

not feasible - olifferent backgrounds olifferent possible systematics

· Directionality.

Correlation of nuclear recoil track with the Earth's galactic motion due to the distribution of WIMP velocities

Very hard To realize

- Diurnal modulation
 Daily variation of the rate due to different Earth depth crossed by Wimps
 ouly for high 6
- Annual modulation of the signal annual variation of the rate due to Earth motion around the Sun

The only fearible one

Identifying signals from the WIMP wind

In practice only one signature can be exploited: the annual modulation of the rate

change in $\frac{dR}{dER}$ along the year because of the yearly motion of the Earth around the Sun moving in the Galaxy:

$$v_{\oplus}(t) = v_{\Theta} + v_{orb} \cos \gamma \cos [\omega(t-t_0)]$$

$$\eta(t) = \frac{\mathbf{v}_{\oplus}(t)}{\mathbf{v}_0} = \eta_0 + \Delta \eta \cos[\omega(t-t_0)]$$

with $\eta_0 = 1.05$ and $\Delta \eta = 0.07 \rightarrow large mass needed$

Expected rate in given energy bin at time t of the year:

$$\begin{split} S_k[\eta(t)] &= \int \frac{dR}{dE_R} \ dE_R \cong S_k[\eta_0] + \left[\frac{\partial S_k}{\partial \eta} \right]_{\eta_0} \Delta \eta \cos[\omega(t-t_0)] = \\ \Delta E_k &= S_{0,k} + S_{m,k} \cos[\omega(t-t_0)] \end{split}$$

- · DRUMIER, FREESE, SPERGEL PROPE
- . FREESE et al. PROPE

Is the annual modulation signature well distinctive?

- 1) Modulated rate according to cosine function
- 2) only in a defined low energy range
- 3) with proper period (1 year)
- 4) with proper phase (about 2 june)
- 5) for single hit events in a multi-detector set-up
- 6) with modulated amplitude in the region of maximal sensitivity ≤ 7%.

YES!

To fake this signature, the spurious effects and side reactions must satisfy contemporaneously all the 1 to 6 requirements

Scintillators as target-detectors

- · Known technology
- Cost/Mass relatively low
- Large mass → suitable statistics for annual modulation
- Statistical discrimination of recoil nuclei e.g. in NaI(Tl) and LXe
- A large set of target-detectors nuclei
- Sensitive also to spin-dependent interactions

DAMA ACTIVITIES @LNGS

Recent References

• ~100 kg NaI(TI)

PLB389 (1996) 757; PLB408 (1997) 439; PLB424 (1998) 195; PLB450 (1999) 448; N.Cim.A112 (1999) 545; PRD61 (2000) 023512; PRL83 (1999) 4918; N.Cim.A112 (1999) 1541; ROM2F/2000-01 and INFN/AE-00/01 Το Φρρεφο θω PLB

~ 6.5 kg LXe

N.Cim.C19 (1996)537; PLB387(1996) 222; PLB436(1998) 379; ROM2F/2000-05

CaF₂(Eu) + by-products + others

Astrop.Phys.5(1996) 217; Astrop.Phys. 7(1997)73; N.Cim.A110 (1997)189; PLB408(1997)439; Astrop. Phys. 10 (1999) 115; NPB546 (1999) 19; PLB460 (1999) 235; NPB563 (1999) 97; PRC60 (1999) 065501; PLB465 (1999), 315; ROM2F/99/32

The ~100 kg NaI(TI) experiment Unique in the world for exposed mass

The NaI(TI) crystals..... the installation and the glove-box for calibration

EXPERIMENTAL DETAILS ON: Nuovo Cin. A 112 (1999) S45.

Seaces stee

reals! +

NaI Deservi

Main Features

(full description in Il Nuovo Cim. A112 (1999), 545)

- 9x9.70kg NaI(Tl) (WIMP exp) + 4x7.05kg NaI(Tl) (old SIMP exp) in sealed Cu box flushed with HP N₂ from bottles
- Reduced standard contaminants (e.g. U/Th of order of ppt) by material selection and growth/handling protocols.
- Each detector coupled through 10cm long light guides to two low background EMI9265B53/FL 3" diameter PMTs working in coincidence (selected materials).
- Low Radioactive Shields: 10cm of high radiopurity copper inner; 15cm of very low radioactivity lead outer; 1.5mm Cd foil and polyethylen/paraffin for neutron shield.
- Further external sealing of the shield from environmental air.
- · Installation with conditioned temperature.
- Calibration in sealed environment using the upper glove-box: no air pollution + in the same conditions as the production runs.
- Single PMT working at single photoelectron level.
 Usual software energy threshold: 2 keV.
- Pulse shape recorded over 3250ns by a 200 Msample/s Transient Digitizer.
- · Monitoring and control of several stability parameters.
- Control and alarm system continuously operating by selfcontrolled computer processes.
- Data collected from low energy up to MeV region, despite the hardware optimization was done for the low energy.

Energy scale monitoring

Calibration stability control mainly by ²¹⁰Pb(*) peak (46.5 keV) each ~ week: peak position and energy resolution.

(*) Mainly external contamination at beginning of the storage underground

The energy threshold

- Using the sealed glove-box: γ sources down to keV range through low Z MIB window on detector housing + keV range "Compton" electrons
- · Hardware threshold @ single photoelectron level

• 5.5 - 7.5 photoelectrons/keV

Residual noise rejection above software energy threshold

In our Nal(TI) set-up:

Absence of microphonic noise.

- Photoelectrons/keV from 5.5 to 7.5 (depending on the detector)
- Scintillation pulses time distribution with τ of ≈ 240 ns.
- \bullet PMT noises: fast single photoelectrons with τ of order of tens ns.

→ PMT noise rejectable by the study of pulse profile recorded by TD. Several variables can be built from the considered low energy data (2-20 keV) to treject noise from scintulation pulses, such as e.g.

x₁ expected values: close to 0 for noise and close to ≈0.7 for scintillation pulses

x2 expected values: close to 1 for noise and close to ≈0.5 for scintillation pulses

Typical energy spectrum

The DAMA/NaI-3&4 running periods

- The 9 NaI(Tl) detectors all together
- Single-hit events → low energy Compton events and X-rays/Auger electrons correlated with higher energy escaping γ's vetoed by the close detectors (impossible when a single detector is used).
- · Never used neutron source in the set-up.
- Electronics optimized and environmental background contributions well reduced.

Discussed in the seminars at CERN by R.Bernabei on april 1999; Beyond99; included in the paper N.Cim.A112(1999),1541; energy spectra [3,6]keV on PLB460(1999),236 and up to 500keV on PRC60(1999) 065501.

The running periods for annual modulation search

period	statistics (kgday)	references PLB424 (1998), 195	
DAMA/NAI-1	3363.8 winter + 1185.2 summer		
DAMA/NaI-2	14962 ~ november → end of July	PLB450 (1999), 440	
DAMA/NaI-3	22455 ~ middle August → end of September	INFN/AE-00/01 to appear on PLB	
DAMA/NaI-4	16020 ~ middle October → second half of August	idem	
Total statistics	57986	idem	
+ DAMA/NaI-0 (properly included in the final result)	roperly included fraction by PSD		

Model independent result from DAMA

- 4 yearly cycles
- Exposure of 57986 kgday
- · Residuals of rate vs time
- · Low energy region: 2-6 keV interval

Zero of the time scale:

January 1st of the first year of data taking

A
$$\cos[\omega(t-t_0)]$$

$$\chi_0^2$$
 (A=0)/dof = 48/20 (P = 4 x 10-4)

- 1) $t_0 = 152.5$ days (fixed) $A = (0.022\pm0.005) \text{cpd/kg/keV}$ $T = 2\pi/\omega = (1.00\pm0.01)$ years $\chi^2/\text{dof} \approx 23/18$
- 2) T = 1 year (fixed) A=(0.022±0.005)cpd/kg/keV t₀ = (144±13) days χ²/dof = 23/18

Residuals vs time

Residual_i = $\langle \mathbf{r}_{ijk} - \mathbf{flat}_{jk} \rangle_{jk}$

- The average is made on all the detectors (j) and on all the 1 keV bins (k) which constitute the considered energy interval.
- * ${\bf r}ij{m k}$ is the rate in the considered ${m i}$ th time interval for the ${m j}$ th detector in the ${m k}$ th energy bin
- flatjk is the rate of the j th detector in the k the energy bin averaged over the cycles.

Residuals vs time

Presence of annual modulation in the low energy counting rate

(see "Residuals vs time")

Stability controls

No modulation in the:

- parameters (as T, Rn, ...)
- electronic noise
- background
- energy scale
- efficiency
- + they fail some of the 6 requirements

(see "Stability control")

Side reactions

No one found able to give the observed modulation and to satisfy the 6 requirements

(see later)

Investigation
on possible systematics
and side reactions
for the new
DAMA/NaI-3 and DAMA/NaI-4
running periods

The stability control (1)

 Several parameters monitored and acquired by CAMAC to know the set-up working conditions

 Sizeable temperature variations could cause (PSA not used!) only small light response variation: average slope of the light output ≈ -0.2%/oC in our operating temperature range.

→ modulated amplitude (T and \$\phi\$ as for Wimp):

(0.021 ± 0.046) °C DAMA/NaI-3

(0.064 ± 0.058) °C DAMA/NaI-4 → consistent with zero

 Detectors excluded from environmental air! + time correlation analysis of the external Radon level with time → modulated amplitude (T and φ as for Wimp):

 (0.14 ± 0.25) Bq/m³ DAMA/NaI-3

 (0.12 ± 0.20) Bq/m³ DAMA/NaI-4 \rightarrow consistent with zero

L. No MODULATION IN THE PARAMETERS

The stability control (2)

 Distribution of total hardware rates of the 9 crystals over the single ph.el. threshold (that is from noise to "infinity"):

shows a cumulative gaussian behaviour fully accounted by expected statistical spread arising from the sampling time used for the rate evaluation.

(σ = 0.6% for DAMA/NaI-3 and σ = 0.4% for DAMA/NaI-4, values in agreement with those expected on the basis of statistical arguments + no evidence of time modulation of RH has been found)

L. No MODULATION IN THE ELECTRONIC NOISE

HE spectrum stability (3)

1 -Rates at higher energy (above 90 keV), R90:

 a - R₉₀ percentage variations with respect to their mean values for single crystal

 \rightarrow cumulative gaussian behaviour with $\sigma\approx 1.3\%$ (DAMA/NaI-3) and $\approx 1\%$ (DAMA/NaI-4) - fully accounted by statistical considerations

b -Fitting the behaviour with time, adding a term modulated according to T=1 year and t₀ = 152.5 day (as for Wimps) one gets as modulated amplitude R90 = (-0.11 ± 0.33) cpd/kg for DAMA/NaI-3 R90 = (-0.35 ± 0.32) cpd/kg for DAMA/NaI-4

→ consistent with zero + if a modulation present in the whole energy spectrum at the level found in the lowest energy region → R90 ~ tens cpd/kg → ~ 100 σ far away

2 - Focusing the attention on an energy region nearer to the one of possible signal (10-20 keV), the modulated amplitudes: A = (-0.0044 ± 0.0044) cpd/kg/keV for DAMA/NaI-3 and A = (-0.0071 ± 0.0044) cpd/kg/keV for DAMA/NaI-4 are found → they can be considered statistically consistent with zero.

L. No MODULATION IN THE BACKGROUND

The stability control (4)

 Relative variations of the energy calibration factors (tdcal) from the ²¹⁰Pb peak - without applying any correction - for all the 9 detectors during the whole DAMA/NaI-3 and DAMA/NaI-4 data takings

gaussian behaviour with

 $\sigma = (0.95 \pm 0.04)\%$

Uncertainties on tdcal for each detector <1% within each ≈7 days period → Negligible effect because of the routine calibration corrections and energy resolution at low energy: overall additional relative energy spread ≤3 10-4 @ 2 keV and ≤3 10-3 @ 20 keV

L. NO MODULATION IN THE ENERGY SCALE

The efficiency stability

2-8 keV 65 different sets; ΔE=2 keV; crystals together.

41 different sets

(2-4)+(4-6)+(6-8) keV =

 DAMA/Nal-4: 24 different sets

If T and D as for WIMP:

Energy	Modulated amplitude DAMA/Nal-3 + 4
2-4 keV 4-6 keV	(1.0±1.0) 10 ⁻³ (0.1±0.7) 10 ⁻³
6-8 keV	-(0.2±0.5) 10 ⁻³

L. No MODULATION IN THE EFFICIENCY

Level of known systematic uncertainties

· Temperature variations

<< 0.1% random variation in the light response along the year + calibration and energy resolution + time correlation analysis gives modulated contribution compatible with zero

Radon variations

Detectors excluded from environmental air. Moreover, time correlation analysis gives modulated contribution compatible with zero

· Energy calibration

Uncertainties negligible with the respect to the energy resolution at low energy: overall additional relative energy spread <3 10-4 @ 2 keV and <3 10-3 @ 20 keV

· Efficiency

$$\frac{\varepsilon \cdot \langle \varepsilon \rangle}{\langle \varepsilon \rangle} < 6 \times 10^{-3}$$

all detectors in 2-8 keV

- Background variations
 - i) No evidence of modulation in total hardware rate above single photoel. (no noise modulation);

ii) No evidence of modulation in rate above 90keV, R90< 0.3 cpd/kg;

iii) S_m compatible with zero above the first pole of the Helm FF;

even if larger cannot satisfy all the 1 to 6 requirements of the annual modulation signature

"Side reactions"

- They must simulate the WIMP signal features: yearly modulation of "single hit" rate with to and only in the lowest energy region.
- Up to now not suitable candidate found:

MACRO µ modulation:

° all the needed requirements not satisfied

° expected modulated amplitude << 10-4 cpd/kg/keV

??Suggestions??

...while collecting further statistics for the annual modulation studies...

ROM2F/99/26 to app. or N. Cim. A117 (199) 541

 Investigation of possible rate diurnal modulation in the DAMA/Nal-2 data: 14962 kg day

Daily variation of the rate due to different Earth depth crossed by WIMP. Appreciable only for high σ_p candidates

To test the possibility of a high σ_p relic component with small halo fraction $\xi<10^{-3}$

• "Sidereal time" vs "θ":

Limits on halo fraction (ξ) vs σ_p plane for SI coupled candidates for several M_w .

- Slanted lines: best existing limits on ξορ.
- · Dashed regions are excluded by the diurnal variation analysis
- · Dotted regions are allowed by the annual modulation analysis

- Absence of rate diurnal variation in DAMA/Nal-2 excludes the presence of:
 - high cross section Dark Matter particle component (with small halo fraction)
 - spurious effects correlated with the diurnal sidereal time.

(similar conclusions when correlation analysis with solar time is used)

CONCLUSION #1

presence of modulation with the proper features for a WIMP induced effect

absence of known sources of possible systematics and side reactions able to fake this modulation

presence of a WIMP contribution to the experimental rate is candidate by these data independently on its nature and coupling with ordinary matter

At this point one can investigate a possible candidate

for that a model is needed as well as an effective energy and time correlation analysis strategy

Analysis strategy

MAXIMUM LIKELIHOOD METHOD:

→ studying the differential energy spectrum with ΔE=1keV

(best compromise between an high S/N and available statistics)

FORMULATION:

- ° grouping the events in cells of 1 day (i), 1 keV(k) for each detector (j): Nijk
- ° Compare the Nijk with the expectations:

$$\mu_{ijk} = (b_{jk} + S_{0,k} + S_{m,k} \cos \omega (t_i - t_0)) M_j \Delta t_i \Delta E \epsilon_{jk}$$

bik = time independent background

 $S_{0,k} = \xi \sigma_p S_{0,k}^i(M_W)$

 $S_{m,k} = \xi \sigma_p S'_{m,k}(M_W)$

 $(\xi \!\!=\!\!\! \frac{\rho_W}{0.3 Ge\,V/cm^3}\;;\;S'\;according\;to\;standard\;hyphoteses)$

° Minimize the function:

$$y = -2\ln(L) - \text{const} \qquad \text{with } L = \Pi_{ijk} e^{-\mu_{ijk}} \frac{\mu_{ijk} N_{ijk}}{N_{ijk}!} = \Pi_{ijk} I_{ijk}$$

° Final results by minimizing y with respect to σ_p , M_W , b_{jk} 's (remind always $\Delta E = IkeV$!)

GOODNESS OF THE METHOD:

- extracts a possible signal in energy bins where the sensitivity is maximal (generally at lower energy) + consistency in higher energy bins (where a possible signal is fallen down) offers a further strength to the result.
- → does not requires any a priori choice of the most sensitive energy interval.

New results: DAMA/NaI-3&4

 Framework: SI candidate; standard astrophysical parameters (e.g. v₀=220 km/s); detector parameters included; standard scaling law for cross sections; Helm SI Iodine form factor; b_{ik}≥0; M_w>30GeV to account for results at accelerators

experimental Nijk ⇔ μijk expected from the model

running period	statistics (kg d)	M _w (GeV)	<u></u> ξор (рb)	C.L. (m.l.r)
DAMA/NaI- 1 Pl.B424 (1998),195	3363.8 winter + 1185.2 summer	59 ⁺³⁶ -19	(1.0+0.1)10-5	90%
DAMA/NaI- 2 PLB450 (1999),448	from middle november to the subsequent july	59,14	$(7.0^{+0.4}_{-1.7})10^{-6}$	98.5%
DAMA/NaI- 3 ROM2F/2000-01 INFN/AE-00/01 to appear on PLB	22455 from middle August to end of September	56-18	(9,7 ^{+0.3} _{-3,5})10 ⁻⁶	98.3%
DAMA/NaI- 4 ROM2F/2006-01 INFN/AE-00/01 to appear on PLB	16020 middle October to second half of August	44.14	(6.9 ^{+3,9} _{-3,8})10 ⁻⁶	92.8%

DAMA/NaI-3 & 4 statistical evaluations

1) Maximum likelihood ratio:

DAMA/NaI-3:

 $(-2 \ln \lambda) = 5.67$ is asymptotically distributed as a χ^2

DAMA/NaI-4:

 $(-2 \ln \lambda) = 3.23$ is asymptotically distributed as a χ^2

- \rightarrow in favour of the hypothesis of presence of modulation with given $\xi \sigma_p$, M_w at 98.3% C.L. and at 92.8% C.L. respectively
- 2) z-test:

using the variable
$$z = \frac{1}{N} \sum_{ijk} \left[2 \left(\mu_{ijk} - N_{ijk} \right) + 2N_{ijk} \ln \left(\frac{N_{ijk}}{\mu_{ijk}} \right) \right]$$
 (PDP)

(Similar conclusions obtained with other chosen variables)

- N number of considered {ijk} bins (d.o.f.).
- z variable would be a χ²/d.o.f. for sufficiently large N_{ijk} which is not always the case here.
- expected distribution of the z variable by a MonteCarlo code (simulation of 104 independent experiments with the same statistics as each one of the considered periods)
- DAMA/NaI-3: z = 1.036 when using the best fitted values
- DAMA/NaI-4: z = 1.009 when using the best fitted values
- → z MonteCarlo distribution gives a probability of 19% and 99.8% to get worse z value

GLOBAL ANALYSIS

 Framework: SI candidate; standard astrophysical parameters (e.g. v₀=220 km/s); detector parameters included; standard scaling law for cross sections; HeIm SI Iodine form factor; b_{jk}≥0; M_w>30GeV to account for results at accelerators

experimental Nijk & pajk expected from the model

running period	statistics (kg d)	M _W (GeV)	ξσ _p (pb)	C.L. (m.l.r)
DAMA/Nai-1 to DAMA/Nai-4	57986	52 ⁺¹⁰	(7.2 ^{+0.4} _{-0.9})10 ⁻⁶	4σ
DAMA/NaI-1 to DAMA/NaI-4 + constraint from DAMA/NaI-0*	57986	44+12	(5.4±1.0)10 ⁻⁶	~40

* It completely accounts for all the DAMA results on WIMP search: constraint from exclusion plot of DAMA/NaI-0 (PSD)

Result with the Feldman and Cousins approach (standard assumptions) DAMA/NaI-0 to 4

- Allowed at 3 o
- $v_0 = 220 \text{ km/s}$

$$M_w = (43^{+13}_{-9}) \text{ GeV},$$

 $\xi \sigma_p = (5.4\pm1.0) \ 10^{-6} \text{ pb}$
at ~4 \sigma C.L.

Extending the DAMA/NaI-0 to 4 region by accounting for the vouncertainties

• $v_0 = 220 \text{ km/s}$ (dotted)

- $v_0 = (220\pm 50) \text{ km/s} (90\% \text{ C.L.})$ (continuous) { $v_{esc} = (550\pm 100) \text{ km/s} (90\% \text{ C.L.}) \leftarrow \text{negligible effect}$ } at 1 σ C.L. 30 GeV $\leq m_{\chi} \leq 105$ GeV
- Including possible Dark halo rotation (dashed)
 at 1σ C.L. 30 GeV ≤ mχ ≤ 132 GeV

A similar analysis was performed for DAMA/NaI-1&2:
PR D61 (1000) 023512

Accounting for further uncertainties can enlarge the allowed region

 example: the Iodine Form Factor (by Helm)

e.g.: varying the standard values of the FF parameters by 20%:

- 1 the region moves toward larger M_w and lower σ_p
- 2 the Sm(2-6 keV) increases of ≈15%

CONCLUSION #2

The comparison of the experimental data
with the model for
a spin-independent coupled WIMP
with mass larger than 30 GeV (such as the
neutralino) allows to put it as a candidate for the
observed effect

Is a neutralino with mass and cross section in the region presently allowed by DAMA of cosmological interest?

→ (from A.Bottino et al.)

- 1155M
- . DIRECT US INDIRECT SEARCHES
- . COSHOLOGICAL ABBUDAUCE
- . WHAT EXPECTED FROM ACCELERATIONS?

Conclusions

- A WIMP contribution to the measured rate is candidate by the model independent residuals and by the investigation of known sources of systematics
- The global full correlation analysis in terms of a SI candidate with mass > 30 GeV favours the modulation at \sim 4 σ C.L. (+ shown by Bottino et al. a χ in the DAMA allowed region will be of cosmological interest)

investigation on other possible uncertainties on the astrophysical, nuclear and particle physics parameters in progress (e.g. FF)

→ it could enlarge the allowed region.

- data taking in progress
- new electronics and DAQ installation on July 2000 (exploiting further peculiarities)
- · fulfil the present installation up to 250 kg

→ wait for more