Violazioni di CP e determinazione dell'angolo α

Aldo Deandrea CERN-TH

Trieste, 27 aprile 2000 XII Convegno sulla Fisica al LEP

Unitarity triangle

non–zero η allows for CP violation.

$$\bar{\rho} = \rho(1 - \lambda^2/2) ; \ \bar{\eta} = \eta(1 - \lambda^2/2)$$

 $A \approx 0.83$

Parameters

Numbers from Caravaglios et al. (hep-ph/0002171) and from LEP Heavy Flavours Steering group, www.cern.ch/LEPHFS/

New experimental results are the first LEP averages for $|V_{cb}|$ and $|V_{ub}|$ and improved limit on Δm_s

$$\begin{split} \lambda : 0.2205 \pm 0.0018 \\ V_{cb} | (LEP) : (40.5 \pm 1.8) \times 10^{-3} \\ |V_{ub}| (LEP) : (4.05^{+0.62}_{-0.74}) \times 10^{-3} \\ \frac{|V_{ub}|}{|V_{cb}|} (CLEO) : 0.085 \pm 0.018 \\ \frac{|V_{ub}|}{|V_{cb}|} (LEP) : 0.104 \pm 0.019 \\ \bar{\rho} : 0.240^{+0.057}_{-0.047} \\ \bar{\eta} : 0.335 \pm 0.042 \\ sin(2\alpha) : -0.38^{+0.24}_{-0.28} \end{split}$$

$sin(2\beta): 0.91 \pm 0.35$ $\gamma: (55.5^{+6.0}_{-8.5})^o$

Figure 1: The CKM triangle shown in the $\rho - \eta$ plane. The shaded regions show $\pm 1\sigma$ contours given by $|V_{ub}/V_{cb}|$, neutral *B* mixing, and CP violation in K_L^o decay (ϵ). The dashed region is excluded by B_s mixing limits. The allowed region is defined by the overlap of the 3 permitted areas. From S. Stone, hep-ph/9910417

The channel $B \to \pi \pi$ for determining α

Figure 2: Processes for $B^o \to \pi^+\pi^-$: Tree (left) and Penguin (right). (hep-ph/9910417)

 $Br(B \to \pi^+\pi^-) = (4.3^{+1.6}_{-1.4} \pm 0.5) \times 10^{-6}$ from CLEO (hep-ex/0001010).

Gronau–London method : measure $B(\bar{B}) \rightarrow \pi^+\pi^-, \pi^0\pi^0, \pi^\pm\pi^0$ and time dependent CP asymmetry in $\pi^+\pi^-$ under the assumption of isospin symmetry and neglecting electroweak penguins.

Tree are I = 0 or I = 2, Penguin (excluding EW penguins) are I = 0

Using isospin analysis one has two complex triangle relations:

 $(1/\sqrt{2})A^{+-} + A^{00} = A^{+0}$

and a similar triangle relation for the charge conjugated processes.

Measuring the six widths

$$B(\bar{B}) \to \pi^+ \pi^- \qquad \pi^0 \pi^0 \qquad \pi^\pm \pi^0$$

and the time dependent CP asymmetry for $\pi^+\pi^-$ determines α except for discrete ambiguities.

However

 $B \to \pi^0 \pi^0$ probably small and difficult to detect

8-fold ambiguity in the solution for the angle 2α

penguin amplitudes $|P/T| \sim 0.2 - 0.5$ are large

The channel $B \to \rho \pi$ for determining α

Proposed by Quinn, Snyder, Lipkin, Nir to allow for an isospin analysis similar to $B \to \pi \pi$, without the $\pi^0 \pi^0$ final state problems and without discrete ambiguities.

Penguin, Tree and $\alpha:$ total of 9 parameters assuming SU(2)-Isospin

BaBar studies: a full analysis of the time dependent Dalitz plot allows to extract the 9 parameters

Possible nonresonant effects in the $m_{\pi\pi}^2 \approx m_{\rho}^2$ region

hep-ph/0002038 Phys. Rev. D to appear.

Problems in determining α

One of the favourite proposals involves the study of the reaction

$B \to \rho \pi$

It has an advantage over the isospin analysis for $B \to \pi\pi$: no $\pi^0\pi^0$ in the final state. Channels arising from the neutral *B* decay:

$$\begin{aligned} \bar{B}^0 &\to \rho^+ \pi^- \\ \bar{B}^0 &\to \rho^- \pi^+ \\ \bar{B}^0 &\to \rho^0 \pi^0 \end{aligned}$$

and the charged decay modes:

$$B^{-} \rightarrow \rho^{-} \pi^{0}$$
$$B^{-} \rightarrow \rho^{0} \pi^{-}$$

Together with the five charge–conjugate channels. Signal of possible difficulties for this strategy: new results from the CLEO Collaboration reported at the DPF99, APS99 Conferences:

$$\mathcal{B}(B^{\pm} \to \rho^0 \pi^{\pm}) = (1.5 \pm 0.5 \pm 0.4) \times 10^{-5}$$

$$\mathcal{B}(B \to \rho^{\mp} \pi^{\pm}) = (3.5^{+1.1}_{-1.0} \pm 0.5) \times 10^{-5}$$

with a ratio

$$R = \frac{\mathcal{B}(B \to \rho^{\mp} \pi^{\pm})}{\mathcal{B}(B^{\pm} \to \rho^{0} \pi^{\pm})} = 2.3 \pm 1.3$$

Updated CLEO result (PRL to appear) $R\simeq 2.6\pm 1.5.$

Computed in simple approximation schemes (factorisation with no penguins), one gets, from the WBS (*Wirbel, Bauer, Stech*) model gives

$R\simeq 6$

Penguins? A calculation including penguins in the factorisation approximation (Deandrea et al.) gives

$R \simeq 5.5$

From hep-ph/9708222 (Ciuchini et al.) beyond factorisation:

QCDSR: R = 6.3lattice: R = 5.5QM: R = 6.4ABLOPR: R = 8.1

Inclusion of new contributions?

Figure 3: The polar diagrams. For the B resonances the strong coupling is on the left and the weak coupling on the right; the situation is reversed for the ρ production (hep-ph/0002038, A. Deandrea et al.)

It arises from virtual resonant production; the intermediate particle is B^* meson resonance or other excited states; they cannot be produced on-shell, but B^* contributions may be important (almost mass degenerate with B). The tail produces sizeable effects because it is known theoretically that the strong coupling constant $B \ B^* \ \pi$ is large.

Form factor necessary to take into account offshell and hard pion effects.

Table 1: BRs for the charged *B* decay channels into three pions (strong coupling constants g = 0.40 and h = -0.54).

Channels	ρ	$\rho + B^*$	$\rho + B^* + B_0$
$B^- \to \pi^- \pi^0 \pi^0$	1.0×10^{-5}	1.0×10^{-5}	1.0×10^{-5}
$B^- \to \pi^+ \pi^- \pi^-$	0.41×10^{-5}	0.58×10^{-5}	0.63×10^{-5}

Table 2: BRs for the charged *B* decay channels into three pions (strong coupling constants g = 0.60 and h = -0.70).

Channels	ρ	$\rho + B^*$	$\rho + B^* + B_0$
$B^- \to \pi^- \pi^0 \pi^0$	1.1×10^{-5}	1.0×10^{-5}	1.1×10^{-5}
$B^- \to \pi^+ \pi^- \pi^-$	0.41×10^{-5}	0.74×10^{-5}	0.82×10^{-5}

In the $B^- \to \pi^+ \pi^- \pi^-$ channel the $B^{*,**}$ resonance contribution may be as large as the ρ . Define

$$\begin{split} \Gamma_{eff}(B^- \to \rho^0 \pi^-) &= \Gamma(B^- \to \pi^- \pi^+ \pi^-)|_{\sqrt{s} \in (m_\rho \pm \delta)} \\ (\delta = 200 - 300 \text{ MeV}); \text{ one has} \\ BR_{eff}(B^- \to \rho^0 \pi^-) &= 0.82 \times 10^{-5} \\ BR(B^- \to \rho^0 \pi^-) &= 0.41 \times 10^{-5} \end{split}$$

Channels	ρ	$\rho + B^*$	$\rho + B^* + B_0$
$\bar{B}^0 \to \rho^- \pi^+$	0.50×10^{-5}	0.52×10^{-5}	0.49×10^{-5}
$\bar{B}^0 \to \rho^+ \pi^-$	1.7×10^{-5}	1.7×10^{-5}	1.7×10^{-5}
$\bar{B}^0 \to \rho^0 \pi^0$	0.10×10^{-5}	0.15×10^{-5}	0.12×10^{-5}
$B^0 \to \rho^+ \pi^-$	0.49×10^{-5}	0.51×10^{-5}	0.48×10^{-5}
$B^0 \to \rho^- \pi^+$	1.7×10^{-5}	1.7×10^{-5}	1.7×10^{-5}
$B^0 \to \rho^0 \pi^0$	0.11×10^{-5}	0.17×10^{-5}	0.15×10^{-5}

Table 3: BRs for the neutral *B* decay into $\pi^+\pi^-\pi^0$ (g = 0.60, h = -0.70).

Neutral B decay modes

A moderate ~ 20% (resp. 50%) for \bar{B}^0 (resp. B^0) effect for the $\rho^0 \pi^0$ decay channel. (for g = 0.60, h = -0.70)

Remark

Other states: Their role decreases with mass, since there is no enhancement from the virtual particle propagator (the 0^+ state B_0 with $J^P = 0^+$ is special, as its coupling to a pion and the meson B is known theoretically to be uniformly (in momenta) large.

Discussion: Determination of α

The analysis shows that the effect of including B resonance polar diagrams is significant for the $B^- \rightarrow \pi^- \pi^- \pi^+$ and negligible for the other charged B decay mode. This result of some help in explaining recent results from the CLEO,

$$R = \frac{\mathcal{B}(B \to \rho^{\mp} \pi^{\pm})}{\mathcal{B}(B^{\pm} \to \rho^{0} \pi^{\pm})} = 3.5 \pm 0.8 ,$$

 $(exp. 2.3 \pm 1.3).$

 $\rho\,$ resonance alone produces a result up to a factor of 2 higher.

For neutral B decays, the only decay mode where $B^{*,**}$ may be significant is the neutral $\rho^0 \pi^0$ decay channel.

As for the time–dependent asymmetry no significant effect is found.

The $B \to \pi \pi \pi$ decay channel allows an unambiguous measurement of α , with two provisos: 1) only the neutral *B* decay modes are considered; 2) the $\rho^0 \pi^0$ channel can be disregarded.

Figure 4: Dalitz plot for $B \to \rho \pi$

Figure 5: B resonances contribution