ELECTROWEAK PHYSICS 2K[†]: Experimental Guidance or Theoretical Innovation?

Giampiero PASSARINO^{ab},

Trieste April 28, 2000

^a Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy

^b INFN, Sezione di Torino, Torino, Italy

†) With the collaboration of:

- A. Arbuzov
- A. Ballestrero
- P. Ciafaloni
- F. Piccinini
- A. Venturi and LEP Collaborations

Summary

• Present and Past: LEP

• Future: LHC, LC

HERE IS WHERE WE STAND NOW For relevent figures

 \bowtie

http://lepewwg.web.cern.ch/LEPEWWG/plots

 \bowtie

2

LEP(theory) past

 \oplus An extensive collection of theoretical predictions for observables in e^+e^- interactions at LEP 2 energies had been presented in the 1996 CERN Report of the Workshop on Physics at LEP2.

LEP(theory) present

 \oplus However, an update with improved theoretical prescriptions was needed in order to match the precision achieved by now in the experimental analyses $\iff LEP2/MC$ Workshop.

Few people left and only the though problems

2f Physics, mostly 2f-4f interplay

- Pair corrections can be a very small effect due to the near-cancellation of real and virtual pairs.
- \odot Whenever the effect of pairs is of order 0.1%, it is below the LEP combined precision of any 2f crosssection.
- \bigcirc Thus, whenever pairs are an issue of order 1% or more this can become important for LEP wide combinations.

Let's continue with a simple case,

$$e^+e^-$$
 PP-corrections to $e^+e^- \to \overline{b}b$ (1)

Diagrams are in Fig. 1. Few definitions

- DIAGRAMS of the first row \equiv Multi-Peripheral or MP;
- DIAGRAMS of the second row \equiv Initial State Singlet, or ISS;
- DIAGRAMS of the third row \equiv Initial State Non-Singlet, or ISNS;
- DIAGRAMS of the fourth row \equiv Final State, or FS.

With both γ and Z exchange, so that there are $ISNS_{\gamma}$, $ISNS_{Z}$ and interference. On top of real PP one has virtual $e^{+}e^{-}$ pairs:

Till last year, TOPAZ0 and ZFITTER only included $ISNS_{\gamma}$ plus virtual, with ISS optional. The approximation is well justified around the Z-peak but now we have to move to higher energies.

- ∇ Furthermore, one has to add a proper definition of *soft* pairs and of *hard pairs*:
- Soft(Hard) Invariant Mass pairs, or SIM(HIM)pairs, according to some pair mass cut.
- ∇ Collaborations are strongly in favour of applying as simple cuts as possible, cuts on IM of the secondary pair only.
- ∇ alternative option: \rightarrow definition from Feynman diagrams. Mass cuts can be found, which nearly 1:1 \iff choosing certain, e.g. ZZ rejection.

Strictly related is the quest for an *operative*, universally accepted, separation of various contributions. Consider again the process $e^+e^- \rightarrow \overline{b}be^+e^-$; σ contributes to three different processes:

Figure 12: Complete set of diagrams for the process $e^+e^- \rightarrow e^+e^-b\bar{b}$.

26

Figure 1: The process $e^+e^- \rightarrow \overline{b}be^+e^-$

- \triangleright genuine 4f events;
- $\triangleright e^+e^-$ **PP-corr to** $e^+e^- \rightarrow \overline{b}b$;
- \triangleright $\overline{b}b$ PP-corr to Bhabha scattering.
- An easy-to-implement separation: let the process be specified by

$$e^+e^- \to \overline{b}b(Q2) + e^+e^-(q^2) \tag{2}$$

Integrate and reduce σ to a two-fold integral with:

$$\begin{array}{rcl}
4 \, m_b^2 &< Q^2 < (\sqrt{s} - 2 \, m_e)^2, \\
4 \, m_e^2 &< q^2 < (\sqrt{s} - \sqrt{Q^2})^2.
\end{array} \tag{3}$$

Introduce two cuts z_p, z_s , i.e. primary and secondary cuts and define

- $\sharp \ e^+e^- \ \mathbf{PP}\text{-corr to} \ e^+e^- \to \overline{b}b:$ $z_p \ s < Q^2 < (\sqrt{s}-2 \ m_e)^2, \quad 4 \ m_e^2 < q^2 < \min\{z_s \ s \ , \ (\sqrt{s}-\sqrt{Q^2})^2\}.$ (4)
- $\ddagger \overline{b}b$ **PP-corr to Bhabha scattering:**

$$z_p \, s < q^2 < (\sqrt{s} - 2 \, m_b)^2, \quad 4 \, m_b^2 < Q^2 < \min\{z_s \, s \,, \, (\sqrt{s} - \sqrt{q^2})^2\}.$$
(5)

- # while the remaining portion of the phase space is *background*.
- At the same time, we must address what has to go in the calculation and what is already subtracted from the data.

• Then, you apply a *theory* correction, actually a subtraction obtained from MC, to go to *signal* definitions.

Typical example?

- \triangle Using IM cuts \Rightarrow relatively large corrections (5%), most of which are due to MP.
- \triangle Here you will have to apply a rather large subtraction, which is rather unnatural.
- \triangle Of course, we can take the MP into account, but only if some *reasonable* cut is applied to $M(\overline{b}b)$.

Finally we come to the most complicate configurations,

$$e^+e^- \to \overline{q}q\bar{Q}Q,$$
 (6)

or even worst, $e^+e^- \rightarrow \overline{q}_1 q_1 \overline{q}_2 q_2$, e.g. uuuu etc. configurations.

Generalization of the separation of the 2f signal from the 4f background. Two options:

- \odot At least one pair has an IM greater than $z_p s$ ($\overline{q}q$ pairs $- \overline{q}Q$ pairs $- qQ, \overline{q}Q$ pairs)
- \odot at least one pair has an IM greater than $z_p s$ while all remaining configurations have IM less than $z_s s$.

Now we come to the really difficult part of the problem.

- ## Since arbitrarily low SIM pairs are allowed, in both cases, a *parton-level* calculation cannot be accurate enough.
- b Under the simplified assumption that one pair (the Q^2 one) is HIM enough and that the remaining one (the q^2 one) is SIM enough we can write σ as

$$\frac{d\sigma_f}{dq^2 dQ^2} = \left(\frac{\alpha}{\pi}\right)^2 \sigma_f(Q^2) \frac{R_{\text{had}}(q^2)}{3 \, sq^2} f\left(s, Q^2, q^2\right). \tag{7}$$

- Two problems: The first one will be referred to as the *double-counting problem*
- At the parton level, $e^+e^- \rightarrow \overline{q}q\overline{Q}Q$ and, for instance we want to Σ_q to define the *Q*-line shape.
- However, when we also \sum_Q to have the full hadronic LS, proper care must be taken in order to avoid double-counting.
- At the parton level this can be done but we need

$$e^+e^- \to \bar{Q}Q + \text{hadrons},$$
 (8)

through $R_{had(s)}$, and the problem is, by far, more severe.

- Thus, yes, we have to agree on what should happen once $R_{had}(s)$ is called for low s.
- A black-box-routine for R_{had} is needed. Why this interest in having $R_{had}(s)$?

- Well, without it we are bound to KKKS and to the description of hadron radiation in terms of moments. This description is well justified around the Z-resonance and for reasonably high values of the z_{\min} parameter where one, quite arbitrarily, defines a primary pair and a secondary one.
- If z_{\min} is high enough, > 0.25, there is no overlapping in the hadronic line-shape, i.e. no double-counting. If, however, $z_{\min} < 0.25$, we do not know how to deal with *double-counting* in the KKKS formulation.

Tentative conclusions:

- The whole 4f must be included to compute the 2f cross-sections;
- \sim The whole 4f is to be divided into two components, signal and background.
 - For our purposes their definition is peculiar, signal is what you have implemented into the SA codes.
 - *background* is what one subtracts by using a MC, typically GRC4f.

We go from one extreme solution to the other:

- **background** = \emptyset , if everything is included in the SA. MP is an example of something difficult to implement into the SA if low-IM regions are required.
- signal = ISNS, i.e. everything else (large effects) is subtracted by MC. However, using different MC programs would bring to subtractions that differ by some per-cent, which then would have to be regarded as a *theoretical* systematic uncertainty.

4f Physics

- \otimes One should remember that the experimental situation is rather different for WW with respect to the other processes.
- \otimes For W-pairs, LEP (ADLO) is able to test the theory to below 1%, ie, below the old uncertainty of $\pm 2\%$ established in 1995. Thus the CC03-DPA constitutes a very important theoretical development.

Figure 2: The generic structure of the factorizable *W*-pair contributions. The shaded circles indicate the Breit–Wigner resonances, whereas the open circles denote the Green functions for the production and decay sub-processes up to $\mathcal{O}(\alpha)$ precision.

Figure 3: Examples for virtual (top) and real (bottom) non-factorizable corrections to W-pair production. The black circles denote the lowest-order Green functions for the production of the virtual W-boson pair.

CC03

- \otimes However, ADLO cannot test single-W or ZZ-signal to better than $\pm 5 - 10\%$, σ_{tot} is $\mathcal{O}(1 \text{ pb})$ or less, 20 times smaller than σ_{ww} .
- \odot There is a nice global agreement between the new DPA predictions for CC03, which are $2\% \div 3\%$ lower than the old *official* approach.
- \odot However, there remains a discrepancy of 0.8% at $\sqrt{s} = 200 \text{ GeV}.$

Figure 4: The CC03 family of diagrams, annihilation \oplus conversion.

Figure 5: Diagrams belonging to the CC11 $\,-$ CC03 family.

Figure 6: The t-channel component of the CC20 family of diagrams: fusion, bremsstrahlung and multi-peripheral.

Single -W

 \odot In single-W production there are interesting gaugeinvariance issues due to unstable particle.

The experimentalists however, are asking for ISR and p_t effects, comparisons including PS, SF and exponentiation.

 \odot In single-W production we have a 2% TU associated with the scale of the *t*-channel γ , with a projected 1% TU when the Fermion-Loop scheme will receive more cross-checks.

and QED

- \odot For simple processes like e^+e^- annihilation and $\gamma\gamma$ collision, the evolution of the *scale* in the SF/PS algorithms can be determined by the exact perturbative calculations.
- \odot However, this is not possible for more complicated processes. When no *exact* $\mathcal{O}(\alpha)$ is available then one resorts to the approximate scale from first order *soft* corrections.
- \odot Therefore we have a conservative 4% TU for ISR from *t*-channel and p_t for single-W production.

NC02

- \odot Compared to the experimental uncertainty on the NC02 σ_{zz} a difference of 1% between theoretical predictions is acceptable. However, it would be nice to improve upon the existing calculations.
- \odot For the σ^{NC02} we have a 1% TU, estimated by varying the IPS in GENTLE and in ZZTO.
- However, given the experimental uncertainty a TU in this order is acceptable and does not seem to require the implementation of missing effects.
- \odot The implementation of a DPA calculation, in more than one code, in σ^{NC02} will bring the TU at the level of 0.5%, similar to CC03.

More details.

- ⊘ There is now a satisfactory overall agreement between the new DPA predictions for CC03, which are $2\% \div 3\%$ lower than in the old *officiaal* approach.
- \odot However, the discrepancy is 0.8% at $\sqrt{s} = 200 \text{ GeV}$. This should be compared with the current experimental precision of $\pm 0.9\%$ with all ADLO data at 183 - 202 GeV combined, compatible with the current TU.
- \oslash The technical precision for $e^+e^- \rightarrow 4f + \gamma$ has reached high standards but at the moment we are unable to present any overall statement on the TU. This is true in particular for the single-W configuration.
- \oslash We expect that the present TU of 0.8% on σ^{CC03} will be reduced to a 0.5% when the sources of the differences between RacoonWW and YFSWW will be better analyzed.
- To go below this level of accuracy would require the complete calculation of one-loop radiative corrections in 4f production, a program that does not seem feasible in a forseeable future.

- \oslash In single-W production most of our activity was centered around gauge-invariance issues due to unstable particle.
- ⊘ The net effect of QED is between 8% and 10% for LEP 2, with s-channel SF over-estimating the effect by $\approx 4\%$.
- \oslash Furthermore, SF with a modified scale seems to agree with PS at the level of 1% when experimental cuts are included or even better for a fully extrapolated setup.

Figure 7: The effect of LL QED corrections to the cross section of the single-W process $e^+e^- \rightarrow e^-\bar{\nu}u\bar{d}$ for different choices of the Q^2 -scale in the electron/positron SF. Left: absolute cross section values; Right: relative difference between QED corrected cross-sections and the Born one. The marker • represents the Born cross-section, \bigcirc represents the correction given by $Q^2_{\pm} = s$ scale, \diamond represents the correction given by $Q^2_{\pm} = |q^2_{\gamma^*}|$ scale, \triangle the correction given by the scales of eq. (??), the correction given by the naive scales of eq. (??). The entries correspond to 183, 189, 200 GeV

Figure 8: $d\sigma/d\cos\theta_e$ [fb/degrees] for $e^+e^- \rightarrow u\overline{d}e^-\overline{\nu}_e$ with $M(u\overline{d}) > 45 \text{ GeV}$ and $\sqrt{s} = 183 \text{ GeV}$.

- ⊘ As far as the scale of α_{QED} is concerned we find that the results with a rescaling of α_{QED} for the *t*-channel γ that has been implemented in NEXTCALIBUR, SWAP and WPHACT show an agreement with EFL predictions (WTO) that is roughly around 2%.
- \bigcirc The EFL itself usually register an accuracy of 1%.

Figure 9: Total cross-section for $e^-e^+ \rightarrow e^-\bar{\nu}_e u\bar{d}$ at $\sqrt{s} = 200$ GeV with $\theta_e < 0.1^\circ$ as a function of the lower cut on $M_{u\bar{d}}$ in IFL and IFL α schemes. The markers give the results of FW and FL by WTO.

- \odot For single-W, therefore, we register a conservative, overall, upper bound of $\pm 5\%$ for TU.
- ⊘ At the moment the TU for QED ISR is estimated by taking the average of the Born result with the one corrected via *s*-channel SF, where $SF(t, p_{tW}^2) > SF(s)$ by +5% at 200 GeV and Born > SF(s) by +12%.
- Implementation of the FL scheme in single-W (in addition to WTO) will bring the TU associated with the scale of α_{QED} a 1%, w.r.t. present 2%.
- \bigcirc A better understanding of QED ISR in single-W production is certainly needed in order to reduce the corresponding TU, hopefully around 1%.
- ⊘ This, however, requires to go beyond the soft approximation, not an easy task.
- Since DPA cannot be applied to single-W production one should include corrections in (improved) Weizsäcker-Williams approximation.
- \oslash For the moment this is not strictly needed but single-W will be one of the major processes at LC to measure not only TGC but also M_W without color reconnection.

The future: LC

Extension of DPA

- ⊙ The goal of a signal definition is to be able to combine the different final state measurements from different experiments so that the new theoretical calculations can be checked with data at a level better than 1%.
- \odot Note, however, that σ^{CC03} will become very problematic at LC energies, where the background diagrams and the gauge dependences are much larger.

Sudakov corrections

- ⊙ In the SM of EW interactions the W and Z bosons get their masses via the Higgs mechanism, and the Sudakov logarithms naturally appear in the virtual EW corrections. There are two *standard* regimes of the Sudakov limit, $s \to \infty$:
 - 1. On-shell massless fermions and gauge bosons with a small, non-zero, mass, $M^2 \ll s$;

- 2. massless gauge bosons and off-shell massless fermions.
- \odot Sudakov logarithms grow rapidly with energy and become dominant in the TeV region, available at the LC.
- \odot The analysis of the Sudakov corrections is thus of the high importance for the next generation of accelerators.
- \odot The two-loop leading and NLO logarithmic corrections in the TeV region have been obtained
- ⊙ the corresponding corrections to σ^{tot} and asymmetries in $e^+e^- \rightarrow \mu^+\mu^-$, $\bar{q}q$ have been found to be of a few percent magnitude at the energy of 1 2 TeV.
- The effect is particularly important for $e^+{}_{L}e^-_{L} \rightarrow$ hadrons, where, at the TeV threshold, the EW corrections are already above QCD corrections.

\mathbf{Single} -W

- \odot Bosonic corrections for single-W are still missing and, very often, our experience has shown, especially at LEP1, that bosonic corrections may become sizeable.
- A large part of the bosonic corrections, as e.g. the leading-logarithmic corrections, factorize and can be treated by a convolution. Nevertheless the remaining bosonic corrections can still be non-negligible, i.e., of the order of one percent at LEP 2.
- \odot For $\sigma^{\text{Born}} 1\%$ should, therefore, be understood as the present limit for TU.
- This will have to be improved, soon or later, since bosonic corrections are even larger at higher energies and σ^{1w} will cross over σ^{ww} at 500 GeV.
- Single-W will be one of the major processes at LC to measure not only TGC but also M_W without color reconnection.

The future: LHC electroweak

- At LHC, substantial improvements in the *precise* determination of EW parameters, such as
 - 1. the W mass;
 - 2. the top quark mass;
 - 3. the EW mixing-angle;
 - 4. vector-boson self-couplings;
 - 5. the mass of the Higgs boson,

will become feasible, providing the basis for additional consistency tests of the SM or its extensions, in particular the MSSM.

• The precise measurement of the production of

 $W^+W^-, \quad W^\pm Z, \quad ZZ, \quad W^\pm \gamma, \quad Z\gamma, \tag{9}$

will provide us with the best test of the non-Abelian structure of the SM. Deviations may come either

- from AC (TGC, QGC) or
- production and decay into vector-boson pairs of heavy objects.
- Therefore, NLO QCD description of the vector-boson pair production is needed.
- Finally, vector-boson vertices can be studied in vectorboson scattering and possible alternative scenarios for the SSB of the EW symmetry can be tested.