Misura della sezione d'urto Zγ* a LEP2

A. Passeri

INFN Roma III

1

- •Fuori dalla regione ZZ e` dominato da $Z\gamma^*$ con un piccolo contributo di $\gamma^*\gamma^*$ $\forall \sigma_{Z\gamma^*}$ dipende poco da \sqrt{s} e molto da m_{γ^*} (da ~pb per alte m_{γ^*} a 120 pb per γ reale)
- la misura e`una verifica MS e uno studio di fondi per le ricerche.

sperimentalmente:

•si cercano eventi a 4 fermioni con m_{ff} qualsiasi
⇒ molti altri diagrammi contribuiscono: trascurabili salvo stati finali con e⁺e⁻
•eventi prevalentemente in avanti
•fondi γγ, WW, single W, ff
•per ora misura σ_{Zγ*} solo in DELPHI + una

verifica in OPAL

Diagrammi 4 fermioni

(b)

(c)

(d)

 e^+

e

•DATI: 438 pb⁻¹ integrati da $\sqrt{s} = 183$ GeV a $\sqrt{s} = 202$ GeV

•MC segnale: EXCALIBUR+JETSET7.4

ISR: QEDPS per stati finali e[±] EXCALIBUR default altrimenti tagli a livello del generatore (Def. del segnale):

Quantity	Requirement
$\cos heta_e$	< 0.98 in $e^+e^-l^+l^-$
$\cos heta_e$	< 0.9999 otherwise
E(e)	$> 1.0 \text{ GeV}$ in $e^+e^-l^+l^-$ only
$M(e^+e^-)$	$> 0.05 \ { m GeV/c^2}$
$M(\mu^+\mu^-)$	$> 0.21~{ m GeV/c^2}$
$M(\tau^+\tau^-)$	$> 3.6~{ m GeV/c^2}$
$M(dar{d})$	$> 2 ~{ m GeV/c^2}$
$M(uar{u})$	$> 2~{ m GeV/c^2}$
$M(sar{s})$	$> 2~{ m GeV/c^2}$
$M(c\bar{c})$	$> 5 { m ~GeV/c^2}$
$M(bar{b})$	$> 15 ~{ m GeV/c^2}$

+ KORALW per qqvv con $m_{\pi^+\pi^-} \le m_{q\bar{q}} \le 2GeV/c^2$ •MC fondo: PYTHIA per $f\bar{f}(n\gamma)$ TWOGAM e BDK per $\gamma\gamma$

GRC4F per single-W e Zee

$l^{+}l^{-}l^{+}l^{-}$

•Eventi con 4 carichi p>2 GeV/c \Rightarrow candidati leptoni $\forall \leq 5$ tracce non puntanti al vertice e con p<2GeV/c

$$\sum q_i = 0^{\text{e}}$$
 $\vartheta_{ij} > 5^{\circ} \text{per i leptoni}$

Selezione inclusiva:

- anti $\gamma\gamma$: $\sum_{i=1}^{4} E_i > 50 GeV$
- anti $\tau\tau$: non collineari in $\theta \in \geq 1 \operatorname{con} l_{tk} > 50 \operatorname{cm}$
- anti conversione γ : $m_{nearest} > 1.2 \text{ GeV/c}^2$
- •fondo principale $e^+e^-q\bar{q}$

<u>Selezione $e^+e^-\mu^+\mu^-$:</u>

identificazione µ ed e per coppie di carica opposta
fondo anche dagli altri stati finali 4 leptoni

Per ora nessun tentativo di separare il contributo $Z\gamma^* \Rightarrow$ sez. d'urto complessiva

Risultati 4 leptoni

Inclusivi:

\sqrt{s}	E (%)	segnale	fondo	dati
188.6	8.5±0.4	10.59±1.63	1.14±0.11	16
192-202	9.5±0.2	14.25±3.04	1.87±0.15	18

 $\sigma_{188} = (1.11 \pm 0.30 \text{ (stat. + sist.)}) \text{ pb}$ $\sigma_{192-202} = (0.75 \pm 0.12 \text{ (stat. + sist.)}) \text{ pb}$ (previsione EXCALIBUR 0.937 pb)

 $e^+e^-\mu^+\mu^-$:

\sqrt{s}	E(%)	segnale	fondo	dati
188.6	5.7±0.6	3.54±0.10	0.16±0.10	5
192-202	6.0±0.2	4.92±0.05	0.36±0.13	7

 $\sigma_{188} = (0.39 \pm 0.18 (stat. + sist.)) \text{ pb}$ $\sigma_{192-202} = (0.48 \pm 0.17 (stat. + sist.)) \text{ pb}$ (previsione EXCALIBUR 0.39 pb)

 l^+l^-qq

n_{carichi}≥7 + E_{tot}≥0.3√s + no ritorno radiativo
candidati leptoni: p≥5 GeV/c + e/µ id. forte o debole
∀≥2 c.l.: stesso flavour + carica opposta + M_{II}> 2 GeV + almeno uno id. forte
JADE clustering senza c.l. → fit cinematico
tagli finali su χ²_{fit} e P_t^{min}[lept.-jet] (i.e.isolamento) aggiustati a seconda della lepton id. (forte/debole)

Energy(GeV)		$\mu^+\mu^-qar q$			$e^+e^-q\bar{q}$		
	Data	Signal	Background	Data	Signal	Background	
182.7	10	3.9 ± 0.1	0.21 ± 0.04	6	3.9 ± 0.2	0.5 ± 0.1	
188.6	14	13.3 ± 0.2	0.88 ± 0.14	16	13.1 ± 0.3	1.71 ± 0.21	
191.6-201.6	16	21.1 ± 0.2	1.1 ± 0.14	37	21.6 ± 0.2	2.3 ± 0.21	

Per studiare il contributo $Z\gamma^*$ si richiede $M_{ll}\approx M_Z$ oppure $M_{adroni}\approx M_Z$

DELPHI Preliminary

Eventi qqee OPAL

• $n_{carichi} \ge 7$, $E_{tot} \ge 90 \text{ GeV}$

•candidati elettroni: p≥2 GeV/c, no γ-conversion, isolati in cono 10° (escluso altro elettrone)

- •cluster in 2 jet senza c.e. e fit cinematico: \rightarrow taglio su Prob.
- •Candidati el. con $E/p \ge 0.7$
- • $p_{e1} + p_{e2} \ge 30 \text{ GeV/c}$
- •c.e. senza cluster in comune. $M_{ee} \ge 10 \text{ GeV/c}^2$
- • $M_{qq} \approx M_Z \implies \text{niente eccessi in } M_{ee}$ **OPAL** preliminary 18 entries signal qqee bg qq 16 signal (yy) bg other 14 data 12 10 8 6 4 2 0 0 120 20 40 60 80 100 140 m_{ee} (GeV)

Distribuzioni di massa prima di chiedere M_{qq}≈M_Z

OPAL preliminary

Analisi dedicata $\mu^+ \mu^- q q$ • $n_{carichi} \ge 7$, $E_{tot} \ge 80$ GeV •due μ ben identificati, carica opposta, p>5 GeV/c, param. impatto rispetto vertice < 1 mm •isolamento in un cono di 400 mrad (escluso altro μ) • $p_{\mu+}+p_{\mu-} \ge 60$ GeV/c

•cluster in 2 jet + fit cinematico

Efficienza media 27%

Energy(GeV)	$\mu^+\mu^-qar q$			
	Data	Signal	Background	
182.7	8	2.9 ± 0.1	0.7 ± 0.16	
188.6	14	10.6 ± 0.1	2.2 ± 0.3	
191.6-201.6	16	16.5 ± 0.1	4.0 ± 0.20	

Canale ideale per estrarre contributo $Z\gamma^*$: fit tipo "binned likelihood" nel piano $(M_{\mu\mu}, M_{jet-jet})$ usando "forme"di ZZ, $Z\gamma^*$, $\gamma^*\gamma^*$, fondo, come fornite da EXCALIBUR \Rightarrow si ottengono proporzioni dei vari contributi.

Nota: $\gamma^* \gamma^*$ descritto male, ma stimato piccolo.

Contributi NC08 secondo EXCALIBUR in $M_{\gamma*}$, M_Z

Risultato fit

$\sigma_{Z\gamma^*}(\sqrt{s=200GeV}) = (0.202 \pm 0.05 \pm 0.016) \text{ pb}$ $\sigma_{ZZ}(\sqrt{s=200GeV}) = (0.033 \pm 0.13) \text{ pb}$

•Valori riportati a 200 GeV assumendo che EXCALIBUR riproduca bene l'andamento di σ con \sqrt{s}

•Errori statistici. Sistematica su $\sigma_{Z\gamma*}$ ottenuta fissando il valore del fondo nel fit.

VVQQ
•Per
$$M_{qq} < 60 \text{ GeV/c}^2 \text{ domina } Z\gamma^*$$

(anche se contribuiscono ben 19 diagrammi)
•caratteristica segnatura a monojet per piccole m_{γ^*}
•EXCALIBUR: $\sigma=0.080 (0.073) \text{ pb a } 189 (200) \text{ GeV}$
 $per 2 \text{ GeV/c}^2 < M_{qq} < 60 \text{ GeV/c}^2$
•a basse masse γ^* puo`adronizzare via risonanze:
 $\gamma^* \rightarrow \rho \rightarrow \pi^+\pi^-$
•contributo stimato con KORALW + effetti non pert.
(VMD). Per ora solo ρ inclusa. Si ottiene:
 $\sigma=0.0822 (0.0747) \text{ pb a } 189 (200) \text{ GeV}$
 $per 2m_{\pi} < M_{qq} < 2 \text{ GeV/c}^2$

inclusione di altre risonanze puo`cambiare < 20%
necessaria analisi specifica per basse masse.

Preselezione (anti-γγ e anti-Bhabha):

• $E_{tot} > 35 \text{ GeV}, \ \theta_{miss} > 15^{\circ}, E_T > 10 \text{ GeV}$

• $E_{em} < 60 \text{ GeV}, \quad E_{em}(\theta < 15^{\circ}) < 10 \text{ GeV}$

•no elettroni a $\theta < 15^{\circ}$

Diagrammi vvqq

<u>Analisi a bassa massa:</u>

• $n_{carichi} \ge 2$, $P_{tot} > 40 \text{ GeV/c}$, $\theta_{miss} > 25^{\circ}$

•sbilanciamento: $> 0.99 E_{vis}$ in 1 solo emisfero

•anti-WW leptonici: nessun μ , ≤ 1 elettrone (elettrone: E<25 GeV, M_{inv}(event)< 10 GeV/c²)

se $E_{carichi}$ >0.9 E_{vis} richiesta M_{inv} (event) < 10 GeV/c² (contro leptoni non identificati e τ)

• ϵ media 13.4%, circa 10% per M_{y*}<2 GeV/c²

Analisi ad alta efficienza: • $n_{carichi} \ge 5$, $\sqrt{s'} < 80$ GeV, $M_{miss} \ge 80$ GeV/c² •sbilanciamento: ≥ 0.95 E_{vis} in 1 solo emisfero •LUCLUS clustering a 2 jet: djoin< 30 GeV/c $\forall \theta_{jet-jet} \le 85^{\circ}$, acoplanarita`(j-j) $\ge 95^{\circ}$

•
$$E_{vis}$$
- $E_{\gamma*}(M_{vis}) < 45 \text{ GeV}$

• ε media 14.4%, purezza 54%

Angolo fra i due jet

OR delle due analisi

Fondi principali WW, W singolo e QCD:

Energy(GeV)	$ u \overline{ u} q \overline{q} $		
ANOUS DESUSANCE SPO	Data	Signal	Background
189	13	5.8 ± 0.1	6.1 ± 0.70
192	2	0.73 ± 0.03	0.91 ± 0.09
196	7	2.2 ± 0.1	2.7 ± 0.3
200	4	2.4 ± 0.1	2.9 ± 0.30
202	3	1.16 ± 0.05	1.4 ± 0.1

Efficienza combinata media: 21.3 ± 0.5 %

A.Passeri Misura sezione d'urto $Z\gamma^*$

Risultato

 $\sigma_{Z\gamma^* \rightarrow qqvv} = 0.184 \pm 0.066(stat) \pm 0.014(MCstat)$ pb mediato su $\sqrt{s} = 189 \div 202$ GeV (previsione MS 0.14 \div 0.16 pb)

CONCLUSIONI

- •La misura di $\sigma_{Z\gamma^*}$ è un *by-product* ed un completamento delle misure di σ_{77}
- •ancora molto lavoro da fare per includere tutti i canali, definire i segnali mettere a punto le tecniche per estrarre $\sigma_{Z\gamma^*}$
- •il coordinamento fra i 4 esperimenti è tutto da costruire
- •I canali con elettroni negli stati finali sono molto problematici
- •gli errori teorici vanno meglio quantificati.

