

Modello SuperSimmetrico Minimale

- Due bosoni di Higgs CP-even (h e H)
- Un bosone di Higgs CP-odd (A)
- Due bosoni di Higgs carichi (H⁺ e H⁻)

h dovrebbe essere leggero: $m_{\rm h} \lesssim 135 \; {\rm GeV}$ (calcoli più recenti)

l valori delle masse, le sezioni d'urto e i rapporti di decadimento dipendono dai parametri MSSM: $M_{\rm SUSY}$, M_2 , μ , $m_{\tilde{g}}$, Aparametrizzati in funzione di tan β , $m_{\rm A}$

 M_{SUSY} : massa comune degli s-fermioni alla scala elettrodebole M_2 : termine di massa comune $\mathrm{SU}(2)$ del gaugino μ : parametro di mixing dell'Higgs $m_{\tilde{g}}$: massa del gluino A: costante di accoppiamento trilineare Higgs–s-quarks tan β : rapporto tra i valori di vuoto dei due doppietti di Higgs

Non si considerano decadimenti in particelle SUSY, che potrebbero essere scoperte direttamente se abbastanza leggere

Selezione $b\bar{b}\tau^+\tau^-$

• Massimo mixing nello s-top sector $(m_{
m h}^{max})$ scelta dei parametri che rendono massimo il valore di $m_{
m h}$ in funzione di $\tan \beta$ No mixing nello s-top sector parametro di mixing nel settore s-top: $X_t = (A - \mu \cot \beta)$ (calcolato secondo la convenzione dei calcoli con i diagrammi a 2 loop o secondo lo schema on-shell di rinormalizzazione) • Scenario a grande μ scelta dei parametri MSSM per i quali il canale $h \rightarrow b\bar{b}$ è soppresso copertura di tutto il piano $m_{\rm h}$ -tan β limite superiore di $m_{\rm h}$ intorno a 107 GeV Combinando il risultato della teoria sul limite superiore di $m_{\rm h}$ in funzione di tan β e le informazioni sulla ricerca diretta dei

bosoni di Higgs leggeri è possibile derivare vincoli sul valore di $\tan \beta$.

La massa del quark top è fissata al valore centrale sperimentale $m_{top} = 174.3$ GeV

$m_{\rm h}^{max}$ scenario

$$\begin{split} M_{\rm SUSY} =& 1 \ {\rm TeV} \\ \mu =& -200 \ {\rm GeV} \\ M_2 =& 200 \ {\rm GeV} \\ m_{\tilde{g}} =& 0.8 M_{\rm SUSY} \\ m_{\rm A} \leq& 1000 \ {\rm GeV} \\ X_t^{OS} =& 2M_{\rm SUSY} \\ X_t^{\overline{MS}} =& \sqrt{6} M_{\rm SUSY} \\ A_b =& A_t \end{split}$$

no-mixing scenario

 $\begin{array}{l} M_{\rm SUSY} = 1 \ {\rm TeV} \\ \mu = -200 \ {\rm GeV} \\ M_2 = 200 \ {\rm GeV} \\ m_{\tilde{g}} = 0.8 M_{\rm SUSY} \\ m_{\rm A} \leq 1000 \ {\rm GeV} \\ X_t^{OS} = 0 \\ X_t^{\overline{MS}} = 0 \\ A_b = A_t \end{array}$

large μ scenario

$$M_{SUSY} = 400 \text{ GeV}$$

$$\mu = 1 \text{ TeV}$$

$$M_2 = 400 \text{ GeV}$$

$$m_{\tilde{g}} = 200 \text{ GeV}$$

$$m_A \leq 400 \text{ GeV}$$

$$X_t^{OS} = -300 \text{ GeV}$$

$$X_t^{\overline{MS}} = -300 \text{ GeV}$$

$$A_b = A_t$$

$$m_b \equiv m_b(m_t) = 3 \text{ GeV}$$

tan β

DELPHI Preliminary

 $\sqrt{s} = 130 \rightarrow 202 \text{ GeV}$

Risultati di Delphi

 $m_{top} = 175 \text{ GeV/c}^2$ $M_{susy} = 1 \text{ TeV/c}^2$ $M_2 = -\mu = 200 \text{ GeV/c}^2$ ___ m_h^{max} scenario 10 No mixing excluded 1 theoretically forbidden 100 120 20 40 60 80 140 $m_h (GeV/c^2)$ Curve di esclusione al 95% C.L. per mixing massimale (linea continua) e no-mixing (linea tratteggiata)

La regione celeste non è permessa dalla teoria

Nessun segnale osservato							
Limit menor al 95/0 C.L. su m_h per m_h scenario							
ALEPH	DELPHI	L3	OPAL				
91.5	85.0	80.5	79.2				
88.9	85.3	85.5	83.7				
Limiti inferiori al 95% C.L. su $m_{\rm A}$ per $m_{\rm h}^{max}$ scenario ALEPH DELPHI L3 OPAL							
ALEPH	DELPHI	L3	OPAL				
ALEPH 91.9	DELPHI 86.2	L3 81.0	OPAL 80.2				
	servato i al 95% (ALEPH 91.5 88.9 i al 95% (servato i al 95% C.L. su m _h ALEPH DELPHI 91.5 85.0 88.9 85.3 i al 95% C.L. su m _A	Servato i al 95% C.L. su m_h per n ALEPH DELPHI L3 91.5 85.0 80.5 88.9 85.3 85.5 i al 95% C.L. su m_A per n				

Limiti inferiori al 95% C.L.

	no-mixing	$m_{ m h}$ -max
Limiti per $m_{ m h}({ m GeV})$		
Exp.(median)	90.8	90.5
Obs.	88.3	88.3
Limiti per $m_{\rm A}({\rm GeV})$		
Exp.(median)	91.1	91.1
Obs.	88.4	88.7
Esclusione in $ an eta$		
Exp.(median)	0.4-4.6	0.6-1.9
Obs.	0.4-4.1	0.7-1.8

Limiti di $m_{\rm h}$ e $m_{\rm A}$ validi per $\tan \beta > 0.4$ Regioni di esclusione di $\tan \beta$ per $m_t < 174.3$ GeV Gli errori sistematici diminuiscono i limiti sulle masse di circa 300 MeV Limiti di $m_{\rm h}$ e $m_{\rm A}$ inferiori a quelli di Aleph: deficit di eventi (sotto-fluttuazioni del fondo?)

Utilizzando i dati a 189 GeV Aleph ha studiato il caso $\tan\beta = \sqrt{2}$ Sono stati investigati 350000 punti MSSM Due ricerche addizionali sviluppate per i canali: \star ZH $\rightarrow \nu \bar{\nu}$ hh $\rightarrow \nu \bar{\nu} \tau^+ \tau^- \tau^+ \tau^-$ ♦ $Zh \rightarrow \nu \bar{\nu} q\bar{q}$ Tutti i punti hanno confermato l'esclusione l limiti su $m_{
m h}$ sono validi a livello di 10^{-5} l limiti su $m_{
m h}$ non dipendono molto dai parametri MSSM e da $m_{\rm top}$ Le regioni di esclusione di $\tan \beta$ dipendono dai calcoli e dai parametri iniziali (es.: m_{top})

Conclusioni

- Ricerca dei bosoni neutri leggeri MSSM a LEP con diverse assunzioni teoriche
- Nessun segnale osservato (per ora)
- Limiti di eclusione al 95% di livello di confidenza $(m_{\rm h}^{max})$
- MSSM h
 88.3 GeV (prec.:80.7 GeV)

 MSSM A
 88.4 GeV (prec.:80.9 GeV)

m_{top}	\leq 169.2 GeV	\leq 174.3 GeV	\leq 179.4 GeV
Esclusione in $ aneta$			
No mixing	0.4-5.7	0.4-4.1	0.4-3.6
$m_{ m h}^{max}$	0.6-2.3	0.7-1.8	0.8-1.5

 Attesa per l'ultimo anno di presa dati: Incremento dell'energia nel centro di massa fino a 206 GeV e oltre Sensibilità per l'esclusione o la scoperta: m_h ~ m_A ~ 92.8 GeV per il processo e⁺e⁻ → hA