

Studio dei tripli vertici bosonici γWW e ZWW

Carla Sbarra Università di Victoria e Laboratorio TRIUMF Collaborazione OPAL

TSLEP, 26-28 aprile 2000

- Analisi "model dependent":
 - studio di eventi WW
 - studio eventi $\mathrm{We}\nu$
 - studio di eventi $\nu\nu\gamma$
- Analisi "model independent":
 - polarizzazione del W in eventi WW
- Conclusioni

Introduzione

Vertice tra tre bosoni di gauge:

- Conseguenza della struttura non abeliana della teoria di gauge $SU(2)_L \otimes U(1)_Y$
- Completamente determinato nel Modello Standard, che prevede l'esistenza e la struttura dei vertici γWW e ZWW

Possibili anomalie da:

• Loop di nuove particelle, sottostrutture dei bosoni (compositness), presenza di bosoni di gauge pesanti, ...

misura del triplo vertice bosonico ≡ test di precisione del Modello standard + ricerca di nuova fisica

Limiti indiretti su possibili anomalie da LEP I Misure dirette inizialmente al Tevatron, oggi dominate da LEP II

Vertici γWW e ZWW a LEP II

Misurati prevalentemente attraverso lo studio di eventi di produzione di coppie di bosoni W.

Informazioni complementari da produzione di W singolo e produzione di fotone singolo.

Esistono due diversi approcci di misura:

Model Dependent

- Si introduce una generale Lagrangiana efficace per i vertici VWW (V=γ,Z), che sia Lorentz invariante
- Si interpretano le misure in termini di valori dei parametri (TGCs) da cui dipende tale Lagrangiana

Model Independent

• Si studia l'elicità dei bosoni W prodotti in eventi $e^+e^- \rightarrow W^+W^-$

Approccio "Model dependent"

La Lagrangiana per i vertici γWW e ZWW dipende da 14 parametri, 7 per ciascuno dei vertici:

$$\begin{split} i \frac{\mathcal{L}_{eff}^{VWW}}{g_{VWW}} &= g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) \\ &+ k_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \\ &+ \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \\ &+ i g_5^V \epsilon_{\mu\nu\rho\sigma} ((\partial^{\rho} W^{-\mu}) W^{+\nu} - W^{-\mu} (\partial^{\rho} W^{+\nu})) V^{\sigma} \\ \mathcal{C} &+ i g_4^V W_{\mu}^- W_{\nu}^+ (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \\ \mathcal{P} &- \frac{\tilde{k}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} \\ \mathcal{P} &- \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \end{split}$$

dove

$$g_{\gamma WW} = e$$
 $g_{ZWW} = e \cot \theta_W$

Statistica di LEP II limitata (specie inizialmente) \rightarrow necessità di ridurre lo spazio dei parametri:

1) trascurando i termini che violano C, P o entrambi restano 6 parametri

2) Richiedendo invarianza per $U(1)_{em}$:

 $Q_W = eg_1^\gamma \quad \Rightarrow \quad g_1^\gamma = 1$

restano 5 parametri

3) Richiedendo invarianza per $SU(2)_L \times U(1)_Y$:

 $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \cdot \tan^2 \theta_W$

$$\lambda_Z = \lambda_\gamma = \lambda$$

restano 3 parametri, convenzionalmente:

$$\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1$$
, $\Delta g_1^Z = g_1^Z - 1$, λ

dove i Δ indicano deviazioni dalle previsioni del Modello Standard

Workshop WW99: con la statistica effettivamente raccolta è possibile ed è in programma estendere le misure anche ad altri TGCs

Studio di eventi $e^+e^- \rightarrow W^+W^-$

Sensibilità ai TGCs in

- Sezione d'urto totale, σ_{tot}
- Direzione di produzione del W⁻, $heta_W$
- Polarizzazione delle W \rightarrow direzioni dei fermioni nel sistema di riferimento del bosone W genitore, $\theta^*_{f(\overline{f})}$

La dipendenza lineare della Lagrangiana dai TGCs si traduce in una dipendenza quadratica dai TGCs sia della sezione d'urto totale che della sezione d'urto differenziale. Maggior parte dell'informazione nelle distribuzioni angolari

e

L'accessibilità agli angoli dipende dal canale di decadimento dei bosoni W:

$W^+W^- \rightarrow q \overline{q} \ell^- \overline{\nu}_\ell$	Q_W da Q_ℓ , ambiguità nel sapore dei quark: $(\cos \theta_{jet}^*, \phi_{jet}^*) \leftrightarrow (-\cos \theta_{jet}^*, \phi_{jet}^* + \pi)$
$W^+W^- \to q\overline{q}q\overline{q}$	Non perfetto jet pairing (75- 85 %) e parziale Q_W da Q_{jets} (70-80 %), ambiguità nel sapore dei quark

 $W^+W^- \rightarrow \ell^- \overline{\nu}_\ell \ell'^+ \nu_{\ell'}$

Due soluzioni per $(\cos \theta_W, \phi_f^*, \phi_{\overline{f}}^*)$, ma si misurano sia θ_f^* che $\theta_{\overline{f}}^*$

In generale occorrono tagli di selezione più "duri" che per la misura della sezione d'urto, e fit cinematici per migliorare la risoluzione sugli angoli

In termini di sensibilità ai TGCs:

$(errore stat.)^{qqqq}$	\simeq	$2 \cdot (\text{errore stat.})^{qq\ell\nu}$
(errore stat.) $\ell \nu \ell \nu$	>	(errore stat.) ^{qqqq}

indipendentemente dalla tecnica di fit utilizzata per estrarre le costanti di accoppiamento.

Esempi di distribuzioni angolari

Carla Sbarra

Estrazione dei TGCs

Sezione d'urto totale:

Si massimizza la probabilità Poissoniana (espressa in funzione dei TGCs) di osservare il numero di eventi selezionati nei dati

Distribuzioni angolari:

 Unbinned Maximum likelihood fit agli angoli misurati
 L3 → PDF da eventi MC a livello rivelatore (boxes). Angoli dei

quark trascurati

- $\begin{array}{l} \mathsf{Aleph} \to \mathsf{PDF} \text{ dalla teoria, } + \text{ funzione di risoluzione da} \\ \mathsf{MC.} \text{ Tutti e } \mathbf{14} \text{ i } \mathbf{TGC} \text{ accessibili, ma solo} \\ \text{ canali "facili": } qqe\nu \text{ e } qq\mu\nu \end{array}$
- Osservabili Ottimali Aleph, Opal, Delphi Si proietta l'informazione contenuta nei 5 angoli in 1 (2) parametro per costante di accoppiamento.

$$d\sigma(\Omega, \alpha) = S^{0}(\Omega) + \sum_{i} \alpha_{i} \cdot S^{1}_{i}(\Omega) + \sum_{ij} \alpha_{i}\alpha_{j} \cdot S^{2}_{ij}(\Omega)$$

$$\mathcal{O}^{1}_{i} = S^{1}_{i}(\Omega) / S^{0}_{i}(\Omega) \qquad \mathcal{O}^{2}_{ij} = S^{2}_{ij}(\Omega) / S^{0}_{i}(\Omega)$$

- Binned max. likelihood fit a distribuzioni di \mathcal{O}_i^1 e \mathcal{O}_{ij}^2
- Fit (χ^2) ai valori medi di \mathcal{O}_i^1 e \mathcal{O}_{ij}^2
- Fit (χ^2) ai valori medi di \mathcal{O}_i^1 , con procedura iterativa per espandere $d\sigma/d\Omega$ attorno al valore misurato.

Workshop WW99: da test effettuati su campioni di eventi Monte Carlo comuni si evince che la sensibilità statistica delle varie tecniche è simile nella misura in cui si usa la stessa informazione.

Errori sistematici

- E_{beam} , Luminosità, M_W , efficienza, teoria, rivelatore, frammentazione, FSI, fondo...
- automaticamente inclusi nei fit di χ² a <00>; aggiunti a posteriori con "smearing" gaussiano della curva di likelihood altrimenti → "problema" per likelihood non simmetriche, con strutture a più minimi
- Canali leptonici $\Delta_{syst} < 0.5 \cdot \Delta_{stat}$ includendo i dati del 1999
- Canale adronico
 - sistematiche dominate da frammentazione e correlazioni di Bose Einstein
 - entità dipende dall'esperimento e può essere confrontabile con errore statistico ottenuto includendo dati del 1999.
 - Workshop WW99: differenze tra esperimenti non dovute a diverse sensibilità delle tecniche di fit, ma a diversi tuning dei MC utilizzati per valutarli

A partire dalle conferenze estive i risultati combinati LEP includeranno trattazione adeguata delle sistematiche correlate (non vero per Moriond) \rightarrow parecchio lavoro in corso

- elettrone nel tubo a vuoto \rightarrow 2 jet acoplanari o 1 leptone carico nello stato finale
- Interferenza con molti altri diagrammi con medesimo stato finale $(e\nu q\overline{q}, e\nu\ell\nu) \rightarrow$ difficile definizione del segnale.
- In principio sensibili solo al vertice $\gamma WW \rightarrow misura \Delta k_{\gamma}$ e λ . In pratica, contaminazione da eventi WW nella selezione
- Sensibilità a Δk_{γ} simile a quella di eventi WW \rightarrow canale importante
- Sensibilià a λ limitata: (err. stat.)^{$We\nu$} $\simeq 10$ ·(err stat)^{WW}
- Per combinare i risultati con quelli dall'analisi di eventi WW, le selezioni sono mutualmente escludentesi e si assumono le stesse relazioni tra i TGCs
- La selezione utilizzata per la misura dei TGCs non coincide in generale con quella utilizzata per la misura combinata della sezione d'urto

Misura della sezione d'urto totale

Definizione del segnale (workshop WW99)

tutti i diagrammi in canale t per il processo $e^+e^- \rightarrow f\overline{f}' e\overline{\nu}_e$, con $M_{q\overline{q}} > 45 \text{ GeV/c}^2$ per stati finali adronici, $E_\ell > 20 \text{ GeV}$ per stati finali leptonici e, limitatamente al canale $e^+\nu_e e^-\overline{\nu}_e \cos \theta_{e^+} < 0.95$, $\cos \theta_{e^-} > 0.95$ (o viceversa)

- teoricamente robusta: gauge invariant
- indipendente dalla copertura angolare dei luminometri
- tagli cinematici limitano incertezze teoriche rimuovendo regione dominata da eventi "gamma-gamma"

Aleph: 183-189 GeV ; Dephi-L3: 189-202 GeV ; Opal: 189 GeV

Estrazione dei TGCs

- Sensibilità ai parametri k_{γ} e λ principalmente nella sezione d'urto totale.
- Contributo delle variabili cinematiche recentemente studiato da OPAL. Variabili più promettenti: E_ℓ e cos θ_ℓ; p^T_{jj} e | cos θ_{j1} − cos θ_{j2}|
- Effetto variabili cinematiche: risolvere minimi multipli → ininfluente per combinazione con eventi WW; importante in misura stand-alone

Incertezza teorica su σ_{tot} (ISR, α_{em}) comporta errore sistematico su Δk_{γ} confrontabile con errore statistico aspettato per combinazione LEP

Studio di eventi $\nu\nu\gamma$

- Diagramma sensibile a vertice $\gamma {\rm WW}~$ contribuisce solo $\sim 0.3\%~$ alla sezione d'urto $\nu\nu\gamma$
- TGCs estratti con fit a σ_{tot} , E_{γ}/E_{beam} e $|\cos \theta_{\gamma}|$

Confronto con sensibilità eventi WW:

 $(\text{errore su } k_{\gamma})^{\nu\nu\gamma} \simeq 4 \cdot (\text{errore su } k_{\gamma})^{WW}$

(errore su λ_{γ})^{$\nu\nu\gamma$} \simeq 10 · (errore su λ_{γ})^{WW}

Stato delle analisi "model dependent"

Collaborazione	Eventi WW			Eventi W $e u$	Eventi $ u u \gamma$		
	$q\overline{q}q\overline{q}$	$q\overline{q}e\nu$	$q\overline{q}\mu\nu$	$q\overline{q}\tau\nu$	$\ell u \ell u$		
Aleph	189	202	202	189	189	fino a 189	fino a 189
Delphi	202	202	202	202	202*	fino a 189	fino a 189
L3	202	202	202	202	202*	fino a 202	fino a 183
Opal	189	189	189	189	189	solo a 189	-

Ciascuna collaborazione presenta fit fino a 3 parametri per Δg_z^1 , $\lambda \in \Delta k_\gamma$ tranne Delphi (solo fit a 1-2 parametri). L3 ha risultati anche per g_5^z e Aleph per tutte le costanti di accoppiamento per termini che violano C, P e CP. Tutti i risultati a energie ≥ 189 GeV sono preliminari.

Risultati analisi "model dependent"

ALEPH + DELPHI+ L3 + OPAL

Correlazioni tra esperimenti trascurate nella combinazione. Includendo canali mancanti a varie energie ci si aspetta, con i dati di tutto il 1999, errore < 0.02 per Δg_z^1 e λ ed errore < 0.05 per Δk_γ

Per le conferenze estive è in programma anche la combinazione dei risultati dei fit a 3 parametri. Gli errori sistematici correlati tra esperimenti saranno trattati in modo adeguato.

TGCs che violano C, P e CP

Fit a 1 parametro, nessun vincolo tra i 14 TGCs.

TGC	Risultato	95% C.L.
$Re(ilde{k}_{\gamma})$	$112^{+.169}_{153}$	[394, .218]
$Re(ilde{\lambda}_{\gamma})$	$.145^{+.113}_{129}$	[117, .353]
$Re(ilde{k}_Z)$	$034^{+.096}_{094}$	[213, .151]
$Re(ilde{\lambda}_Z)$	$.062^{+.072}_{076}$	[088, .198]
$Re(g_4^\gamma)$	$.106^{+.234}_{238}$	[358, .557]
$Re(g_5^{\gamma})$	$.143^{+.326}_{328}$	[401, .879]
$Re(g_4^Z)$	$.095^{+.159}_{161}$	[220, .402]
$Re(g_5^Z)$	$.126^{+.207}_{206}$	[277, .532]
$Im(ilde{k}_{\gamma})$	$.029^{+.090}_{089}$	[146, .205]
$Im(ilde{\lambda}_{\gamma})$	$013^{+.070}_{070}$	[150, .123]
$Im(\tilde{k}_Z)$	$011^{+.059}_{059}$	[126, .105]
$Im(\tilde{\lambda}_Z)$	$.014^{+.047}_{047}$	[077, .105]
$Im(g_4^{\gamma})$	$.425^{+.194}_{197}$	[037, .803]
$\overline{Im(g_5^{\gamma})}$	$061^{+.372}_{369}$	[777, .668]
$Im(g_4^Z)$	$.240^{+.135}_{137}$	[031, .503]
$Im(g_5^Z)$	$015^{+.226}_{225}$	[454, .428]

ALEPH @ 183-202 GeV, stati finali $q\overline{q}e\nu$ e $q\overline{q}\mu\nu$. L3 @ 189-202 GeV: $-0.75 < g_5^Z < 0.29$ al 95% C.L.

Analisi "model independent"

Misura della polarizzazione dei bosoni W in eventi $e^+e^- \rightarrow W^+W^-$ in funzione dell'angolo di produzione.

Metodo dell'angolo di decadimento (L3)

Elementi della matrice Spin density (OPAL)

Direttamente legati alla polarizzazione del W, permettono di estrarre σ_{TT} , σ_{TL} , σ_{LL} . Unica analisi pubblicata a 183 GeV

$$f(\tau = 0) = (24.2 \pm 9.1 \pm 2.3)\%$$

$$f(\tau = 0) = 27\% \text{ in SM}$$

Conclusioni

- Nessuna evidenza di deviazioni dal Modello Standard
- Con l'analisi finale dei dati raccolti nel 1999 le misure delle costanti di accoppiamento k_{γ} , $g_z^1 \in \lambda$ supereranno la precisione aspettata prima dell'inizio di LEP II
- Le tecniche di analisi per l'estrazione delle suddette costanti hanno raggiunto un buon livello di maturazione
- Le sistematiche cominciano a essere importanti e necessitano di maggiore attenzione rispetto a quella dedicatavi precedentemente
- Esiste uno sforzo congiunto delle 4 collaborazioni LEP per estrarre i migliori risultati possibili dai dati
- Raccomandazioni:
 - estendere analisi a termini che violano C, P e CP
 - analisi model independent: $\sigma_T, \sigma_L, \sigma_{TT}, \sigma_{TL}, \sigma_{LL}$ in funzione di $\cos \theta_W$
- Ancora 100? pb^{-1} a $\sqrt{s} > 200~\mathrm{GeV}$

Nonostante clima di "dismantling", c'è ancora possibilità di estrarre buona fisica da LEP