

# Studio dei tripli vertici bosonici $\gamma WW$ e ZWW

# Carla Sbarra Università di Victoria e Laboratorio TRIUMF Collaborazione OPAL

**TSLEP**, 26-28 aprile 2000

- ♦ Introduzione
- Analisi "model dependent":
  - studio di eventi WW
  - studio eventi  $We\nu$
  - studio di eventi  $\nu\nu\gamma$
- Analisi "model independent":
  - polarizzazione del W in eventi WW
- Conclusioni

# Introduzione

#### Vertice tra tre bosoni di gauge:

- Conseguenza della struttura non abeliana della teoria di gauge  $\mathsf{SU}(2)_L \otimes \mathsf{U}(1)_Y$
- Completamente determinato nel Modello Standard, che prevede l'esistenza e la struttura dei vertici  $\gamma WW$  e ZWW

#### Possibili anomalie da:

• Loop di nuove particelle, sottostrutture dei bosoni (compositness), presenza di bosoni di gauge pesanti, ...

misura del triplo vertice bosonico

=
test di precisione del Modello standard
+
ricerca di nuova fisica

Limiti indiretti su possibili anomalie da LEP I Misure dirette inizialmente al Tevatron, oggi dominate da LEP II

### Vertici $\gamma WW$ e ZWW a LEP II

Misurati prevalentemente attraverso lo studio di eventi di produzione di coppie di bosoni W.

Informazioni complementari da produzione di W singolo e produzione di fotone singolo.



Esistono due diversi approcci di misura:

#### Model Dependent

- Si introduce una generale Lagrangiana efficace per i vertici VWW ( $V=\gamma,Z$ ), che sia Lorentz invariante
- Si interpretano le misure in termini di valori dei parametri (TGCs) da cui dipende tale Lagrangiana

#### Model Independent

• Si studia l'elicità dei bosoni W prodotti in eventi  $e^+e^- \rightarrow W^+W^-$ 

# Approccio "Model dependent"

La Lagrangiana per i vertici  $\gamma WW$  e ZWW dipende da 14 parametri, 7 per ciascuno dei vertici:

$$\begin{split} i\frac{\mathcal{L}_{eff}^{VWW}}{g_{VWW}} &= g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) \\ &+ k_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \\ &+ \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \\ \mathcal{C}P &+ i g_5^V \epsilon_{\mu\nu\rho\sigma} ((\partial^{\rho} W^{-\mu}) W^{+\nu} - W^{-\mu} (\partial^{\rho} W^{+\nu})) V^{\sigma} \\ \mathcal{C} &+ i g_4^V W_{\mu}^- W_{\nu}^+ (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \\ P &- \frac{\tilde{k}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} \\ P &- \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \end{split}$$

dove

$$g_{\gamma WW} = e \cot \theta_W$$

Statistica di LEP II limitata (specie inizialmente) → necessità di ridurre lo spazio dei parametri:

- 1) trascurando i termini che violano C, P o entrambi restano 6 parametri
- 2) Richiedendo invarianza per  $U(1)_{em}$ :

$$Q_W = e g_1^{\gamma} \quad \Rightarrow \quad g_1^{\gamma} = 1$$
 restano 5 parametri

3) Richiedendo invarianza per  $SU(2)_L \times U(1)_Y$ :

$$\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \cdot \tan^2 \theta_W$$
$$\lambda_Z = \lambda_\gamma = \lambda$$

restano 3 parametri, convenzionalmente:

$$\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1$$
,  $\Delta g_1^Z = g_1^Z - 1$ ,  $\lambda$ 

dove i  $\Delta$  indicano deviazioni dalle previsioni del Modello Standard

Workshop WW99: con la statistica effettivamente raccolta è possibile ed è in programma estendere le misure anche ad altri TGCs

#### Studio di eventi $e^+e^- \rightarrow W^+W^-$

#### Sensibilità ai TGCs in

- Sezione d'urto totale,  $\sigma_{tot}$
- Direzione di produzione del W $^-$ ,  $heta_W$
- Polarizzazione delle W  $\to$  direzioni dei fermioni nel sistema di riferimento del bosone W genitore,  $\theta_{f(\overline{f})}^*$  e  $\phi_{f(\overline{f})}^*$



La dipendenza lineare della Lagrangiana dai TGCs si traduce in una dipendenza quadratica dai TGCs sia della sezione d'urto totale che della sezione d'urto differenziale. Maggior parte dell'informazione nelle distribuzioni angolari

# L'accessibilità agli angoli dipende dal canale di decadimento dei bosoni W:

$$W^+W^- \to q\overline{q}\ell^-\overline{\nu}_\ell$$

$$Q_W$$
 da  $Q_\ell$ , ambiguità nel sapore dei quark:  $(\cos \theta_{jet}^*, \phi_{jet}^*) \leftrightarrow (-\cos \theta_{jet}^*, \phi_{jet}^* + \pi)$ 

$$W^+W^- \to q\overline{q}q\overline{q}$$

Non perfetto jet pairing (75-85 %) e parziale  $Q_W$  da  $Q_{jets}$  (70-80 %), ambiguità nel sapore dei quark

$$W^+W^- \to \ell^- \overline{\nu}_\ell \ell'^+ \nu_{\ell'}$$

Due soluzioni per  $(\cos \theta_W, \phi_f^*, \phi_{\overline{f}}^*)$ , ma si misurano sia  $\theta_f^*$  che  $\theta_{\overline{f}}^*$ 

In generale occorrono tagli di selezione più "duri" che per la misura della sezione d'urto, e fit cinematici per migliorare la risoluzione sugli angoli

#### In termini di sensibilità ai TGCs:

(errore stat.)
$$^{qqqq} \simeq 2 \cdot (\text{errore stat.})^{qq\ell\nu}$$
  
(errore stat.) $^{\ell\nu\ell\nu} > (\text{errore stat.})^{qqqq}$ 

indipendentemente dalla tecnica di fit utilizzata per estrarre le costanti di accoppiamento.

# Esempi di distribuzioni angolari



# **Estrazione dei TGCs**

#### Sezione d'urto totale:

Si massimizza la probabilità Poissoniana (espressa in funzione dei TGCs) di osservare il numero di eventi selezionati nei dati

#### Distribuzioni angolari:

- Unbinned Maximum likelihood fit agli angoli misurati
   L3 → PDF da eventi MC a livello rivelatore (boxes).
   Angoli dei
  - quark trascurati
  - Aleph  $\rightarrow$  PDF dalla teoria, + funzione di risoluzione da MC. Tutti e **14** i **TGC** accessibili, ma solo canali "facili":  $qqe\nu$  e  $qq\mu\nu$
- Osservabili Ottimali Aleph, Opal, Delphi Si proietta l'informazione contenuta nei 5 angoli in 1 (2) parametro per costante di accoppiamento.

$$d\sigma(\Omega, \alpha) = S^0(\Omega) + \sum_i \alpha_i \cdot S_i^1(\Omega) + \sum_{ij} \alpha_i \alpha_j \cdot S_{ij}^2(\Omega)$$
  
$$\mathcal{O}_i^1 = S_i^1(\Omega) / S_i^0(\Omega) \qquad \mathcal{O}_{ij}^2 = S_{ij}^2(\Omega) / S_i^0(\Omega)$$

- Binned max. likelihood fit a distribuzioni di  $\mathcal{O}_i^1$  e  $\mathcal{O}_{ij}^2$
- Fit  $(\chi^2)$  ai valori medi di  $\mathcal{O}_i^1$  e  $\mathcal{O}_{ij}^2$
- Fit  $(\chi^2)$  ai valori medi di  $\mathcal{O}_i^1$ , con procedura iterativa per espandere  $d\sigma/d\Omega$  attorno al valore misurato.

Workshop WW99: da test effettuati su campioni di eventi Monte Carlo comuni si evince che la sensibilità statistica delle varie tecniche è simile nella misura in cui si usa la stessa informazione.

# Errori sistematici

- $\mathsf{E}_{beam}$ , Luminosità,  $\mathsf{M}_W$ , efficienza, teoria, rivelatore, frammentazione, FSI, fondo...
- automaticamente inclusi nei fit di  $\chi^2$  a <00>; aggiunti a posteriori con "smearing" gaussiano della curva di likelihood altrimenti  $\rightarrow$  "problema" per likelihood non simmetriche, con strutture a più minimi
- Canali leptonici  $\Delta_{syst} < 0.5 \cdot \Delta_{stat} \ \ \text{includendo i dati del 1999}$
- Canale adronico
  - sistematiche dominate da frammentazione e correlazioni di Bose Einstein
  - entità dipende dall'esperimento e può essere confrontabile con errore statistico ottenuto includendo dati del 1999.
  - Workshop WW99: differenze tra esperimenti non dovute a diverse sensibilità delle tecniche di fit, ma a diversi tuning dei MC utilizzati per valutarli

A partire dalle conferenze estive i risultati combinati LEP includeranno trattazione adeguata delle sistematiche correlate (non vero per Moriond) — parecchio lavoro in corso

#### Studio di eventi W $e\nu$



- elettrone nel tubo a vuoto → 2 jet acoplanari o 1 leptone carico nello stato finale
- Interferenza con molti altri diagrammi con medesimo stato finale  $(e\nu q\overline{q},\ e\nu\ell\nu)$   $\rightarrow$  difficile definizione del segnale.
- In principio sensibili solo al vertice  $\gamma WW \to \text{misura } \Delta k_\gamma$  e  $\lambda$ . In pratica, contaminazione da eventi WW nella selezione
- Sensibilità a  $\Delta k_{\gamma}$  simile a quella di eventi WW  $\rightarrow$  canale importante
- Sensibilià a  $\lambda$  limitata: (err. stat.) $^{We\nu} \simeq 10 \cdot (\text{err stat})^{WW}$
- Per combinare i risultati con quelli dall'analisi di eventi WW, le selezioni sono mutualmente escludentesi e si assumono le stesse relazioni tra i TGCs
- La selezione utilizzata per la misura dei TGCs non coincide in generale con quella utilizzata per la misura combinata della sezione d'urto

#### Misura della sezione d'urto totale

#### Definizione del segnale (workshop WW99)

tutti i diagrammi in canale t per il processo  $e^+e^- \to f\overline{f}' e\overline{\nu}_e$ , con  $M_{q\overline{q}} > 45~{\rm GeV/c^2}$  per stati finali adronici,  $E_\ell > 20~{\rm GeV}$  per stati finali leptonici e, limitatamente al canale  $e^+\nu_e e^-\overline{\nu}_e$  cos  $\theta_{e^+} < 0.95$ , cos  $\theta_{e^-} > 0.95$  (o viceversa)

- teoricamente robusta: gauge invariant
- indipendente dalla copertura angolare dei luminometri
- tagli cinematici limitano incertezze teoriche rimuovendo regione dominata da eventi "gamma-gamma"



Aleph: 183-189 GeV; Dephi-L3: 189-202 GeV; Opal: 189 GeV

#### **Estrazione dei TGCs**

- Sensibilità ai parametri  $k_{\gamma}$  e  $\lambda$  principalmente nella sezione d'urto totale.
- Contributo delle variabili cinematiche recentemente studiato da OPAL. Variabili più promettenti:  $\mathsf{E}_\ell = \cos\theta_\ell$ ;  $\mathsf{p}_{jj}^T = |\cos\theta_{j1} \cos\theta_{j2}|$
- Effetto variabili cinematiche: risolvere minimi multipli → ininfluente per combinazione con eventi WW; importante in misura stand-alone



Incertezza teorica su  $\sigma_{tot}$  (ISR,  $\alpha_{em}$ ) comporta errore sistematico su  $\Delta k_{\gamma}$  confrontabile con errore statistico aspettato per combinazione LEP

# Studio di eventi $\nu\nu\gamma$





- Diagramma sensibile a vertice  $\gamma WW$  contribuisce solo  $\sim 0.3\%$  alla sezione d'urto  $\nu\nu\gamma$
- TGCs estratti con fit a  $\sigma_{tot}$ ,  $E_{\gamma}/E_{beam}$  e  $|\cos\theta_{\gamma}|$

#### Confronto con sensibilità eventi WW:

(errore su 
$$k_{\gamma}$$
) $^{\nu\nu\gamma} \simeq 4 \cdot (\text{errore su } k_{\gamma})^{WW}$   
(errore su  $\lambda_{\gamma}$ ) $^{\nu\nu\gamma} \simeq 10 \cdot (\text{errore su } \lambda_{\gamma})^{WW}$ 

# Stato delle analisi "model dependent"

| Collaborazione | Eventi WW                    |                     |                                   |                      |                   | Eventi W $e u$ | Eventi $\nu \nu \gamma$ |
|----------------|------------------------------|---------------------|-----------------------------------|----------------------|-------------------|----------------|-------------------------|
|                | $q\overline{q}q\overline{q}$ | $q\overline{q}e\nu$ | ${ m q} { m \overline{q}} \mu  u$ | $q\overline{q}	au u$ | $\ell  u \ell  u$ |                |                         |
| Aleph          | 189                          | 202                 | 202                               | 189                  | 189               | fino a 189     | fino a 189              |
| Delphi         | 202                          | 202                 | 202                               | 202                  | 202*              | fino a 189     | fino a 189              |
| L3             | 202                          | 202                 | 202                               | 202                  | 202*              | fino a 202     | fino a 183              |
| Opal           | 189                          | 189                 | 189                               | 189                  | 189               | solo a 189     | -                       |

Ciascuna collaborazione presenta fit fino a 3 parametri per  $\Delta g_z^1$ ,  $\lambda$  e  $\Delta k_\gamma$  tranne Delphi (solo fit a 1-2 parametri). L3 ha risultati anche per  $g_5^z$  e Aleph per tutte le costanti di accoppiamento per termini che violano C, P e CP.

Tutti i risultati a energie  $\geq 189~{\rm GeV}$  sono preliminari.

# Risultati analisi "model dependent"

#### ALEPH + DELPHI+ L3 + OPAL



Correlazioni tra esperimenti trascurate nella combinazione. Includendo canali mancanti a varie energie ci si aspetta, con i dati di tutto il 1999, errore <0.02 per  $\Delta g_z^1$  e  $\lambda$  ed errore <0.05 per  $\Delta k_\gamma$ 

#### Fit a 2 parametri



Per le conferenze estive è in programma anche la combinazione dei risultati dei fit a 3 parametri. Gli errori sistematici correlati tra esperimenti saranno trattati in modo adeguato.

# TGCs che violano C, P e CP

Fit a 1 parametro, nessun vincolo tra i 14 TGCs.

| TGC                            | Risultato            | 95% C.L.    |
|--------------------------------|----------------------|-------------|
| $Re(\tilde{k}_{\gamma})$       | $112^{+.169}_{153}$  | [394, .218] |
| $Re(\tilde{\lambda}_{\gamma})$ | $.145^{+.113}_{129}$ | [117, .353] |
| $Re(\tilde{k}_Z)$              | $034^{+.096}_{094}$  | [213, .151] |
| $Re(\tilde{\lambda}_Z)$        | $.062^{+.072}_{076}$ | [088, .198] |
| $Re(g_4^{\gamma})$             | $.106^{+.234}_{238}$ | [358, .557] |
| $Re(g_5^{\gamma})$             | $.143^{+.326}_{328}$ | [401, .879] |
| $Re(g_4^Z)$                    | $.095^{+.159}_{161}$ | [220, .402] |
| $Re(g_5^Z)$                    | $.126^{+.207}_{206}$ | [277, .532] |
| $Im(	ilde{k}_{\gamma})$        | $.029^{+.090}_{089}$ | [146, .205] |
| $Im(	ilde{\lambda}_{\gamma})$  | $013^{+.070}_{070}$  | [150, .123] |
| $Im(	ilde{k}_Z)$               | $011^{+.059}_{059}$  | [126, .105] |
| $Im(	ilde{\lambda}_Z)$         | $.014^{+.047}_{047}$ | [077, .105] |
| $Im(g_4^{\gamma})$             | $.425^{+.194}_{197}$ | [037, .803] |
| $Im(g_5^{\gamma})$             | $061^{+.372}_{369}$  | [777, .668] |
| $Im(g_4^Z)$                    | $.240^{+.135}_{137}$ | [031, .503] |
| $Im(g_5^Z)$                    | $015^{+.226}_{225}$  | [454, .428] |

ALEPH @ 183-202 GeV, stati finali  $q\overline{q}e\nu$  e  $q\overline{q}\mu\nu$ .

L3 @ 189-202 GeV:  $-0.75 < g_5^Z < 0.29$  al 95% C.L.

# Analisi "model independent"

Misura della polarizzazione dei bosoni W in eventi  $e^+e^- \to W^+W^-$  in funzione dell'angolo di produzione.

#### Metodo dell'angolo di decadimento (L3)

Fit alla distribuzione in  $\cos \theta^*$  per eventi  $q\overline{q}\ell\nu$ , in regioni di  $\cos \theta_W \to \text{misura di } \sigma_L, \sigma_T$ 

Mediando su  $E_{cm}$  (183-202 GeV) e  $\cos \theta_W$ :

$$f(\tau = 0) = (25.9 \pm 3.5)\%$$
  
 $f(\tau = 0) = 24.8\%$  in SM



#### Elementi della matrice Spin density (OPAL)

Direttamente legati alla polarizzazione del W, permettono di estrarre  $\sigma_{TT}$ ,  $\sigma_{TL}$ ,  $\sigma_{LL}$ . Unica analisi pubblicata a 183 GeV

$$f(\tau=0) = (24.2 \pm 9.1 \pm 2.3)\%$$
 
$$f(\tau=0) = 27\% \quad \text{in SM}$$

# Conclusioni

- Nessuna evidenza di deviazioni dal Modello Standard
- Con l'analisi finale dei dati raccolti nel 1999 le misure delle costanti di accoppiamento  $k_{\gamma}$ ,  $g_z^1$  e  $\lambda$  supereranno la precisione aspettata prima dell'inizio di LEP II
- Le tecniche di analisi per l'estrazione delle suddette costanti hanno raggiunto un buon livello di maturazione
- Le sistematiche cominciano a essere importanti e necessitano di maggiore attenzione rispetto a quella dedicatavi precedentemente
- Esiste uno sforzo congiunto delle 4 collaborazioni LEP per estrarre i migliori risultati possibili dai dati
- Raccomandazioni:
  - estendere analisi a termini che violano C, P e CP
  - analisi model independent:  $\sigma_T, \sigma_L, \sigma_{TT}, \sigma_{TL}, \sigma_{LL}$  in funzione di  $\cos \theta_W$
- Ancora 100? pb<sup>-1</sup> a  $\sqrt{s} > 200 \text{ GeV}$

Nonostante clima di "dismantling", c'è ancora possibilità di estrarre buona fisica da LEP