

- Produzione
- Decadimenti
- Oscillazioni
- Vincoli su C.K.M.
- Conclusione & Prospettive

Franco Simonetto Universita' & INFN Padova

Franco Simonetto

Frammentazione $b \rightarrow B$

1.
$$x_E = \frac{E_B}{E_b} \begin{cases} < x_E > \\ f(x_E) \end{cases}$$

- 2. Stati intermedi $(B^{*(*)})$?
- 3. Stati finali ($B_d/B_u/B_s/\Lambda_b/\Xi_b$) : $f_d = BR(b \rightarrow \bar{B_d^0}) \ (= b \rightarrow \bar{B^+})$ $f_s = BR(b \rightarrow B_s^{\bar{0}})$ $f_{\Lambda} = BR(b \rightarrow \Lambda_b + \Xi_b)$

b

baryons

fragmentation (OCD)

π,K (QCD)

...Υ (OED)

4. E' possibile estrapolare $e^+e^- \rightarrow pp$? \rightarrow tuning per esperimenti futuri (Tevatron ,BTeV,LHC(B))

 $x_E = E_B/E_b$

Stati Intermedi

Trieste,28-Apr-2000 Franco Simonetto

$f_d/f_s/f_\Lambda(I)$

<u>Metodo indiretto:</u>

$$1 = 2f_d + f_s + f_\Lambda$$
$$\bar{\chi} = f_d \cdot \chi_d + f_s \chi_s$$

<u>ALEPH</u>, da $b \rightarrow pX$:

 $f_{\Lambda} = (12.0 \pm 3.5)\%$ (input) $f_s = (10.3 \pm 1.5)\%$ $f_d = (38.9 \pm 1.9)\%$ $f_{\Lambda} = (10.2 \pm 2.8)\%$ <u>DELPHI (prel)</u> ... dal "rango di rapidita'": $f_s = (8.8 \pm 2.0 \pm 1.0(B_s^{**}))\%$

... e dalla carica Q(b - jet):

 $f_d = (41.8 \pm 1.5 \pm 0.4(f_\Lambda))\%$

 $f_d/f_s/f_\Lambda(II)$

- Risultati consistenti ;
- Media [LEPHFS 99-02] :

 $f_{\Lambda} = (9.9 \pm 1.7)\%$ $f_s = (10.0 \pm 1.2)\%$ $f_d = (40.1 \pm 1.0)\%$

• CDF, dal rapporto $(B_s \rightarrow D_s \ell \bar{\nu}) / (B \rightarrow D \ell \bar{\nu})$:

$$f_{\Lambda} = (9.0 \pm 2.8)\%$$

$$f_s = (16.0 \pm 2.5)\%$$

$$f_d = (37.5 \pm 1.5)\%$$

• discrepanza $\sim 2\sigma$

Vite Medie

2000

	Exp.	$\mathrm{HQET} \ (+\mathrm{models})$			
$\tau_b ~(\mathrm{ps})$	1.564 ± 0.014	-	1.6	_	
$ au_{B^0_d}~(\mathrm{ps})$	1.548 ± 0.032	-	14	_	
$\frac{\tau(B^+)}{\tau(B^0_A)}$	1.065 ± 0.023	> 1	1.7	. ∔	tau(b)
$rac{ au(B_s^0)}{ au(B_s^0)}$	0.935 ± 0.040	$1\pm(\mathcal{O})1\%$	1.2	• '	
$\frac{\tau(\Lambda_b)}{\tau(B^0)}$	0.773 ± 0.036	$0.90 \div 0.95$	1		1 1
<u> </u>			· 1	.990	1995

CDF(II) + B-factories:

 $\sigma(\tau_{B_{d,u}})/\tau_{B_{d,u}} \lesssim 1\%$

- sfida per la teoria
- riduce sistematica per estrazione $|V_{cb}|, |V_{ub}|$:

$$\Gamma(B \to \ell X) = BR(B \to \ell X) / \tau_B$$

Decadimenti Semileptonici

B

- facile identificatione $(\rightarrow tagging)$
- efficienti per discriminare b/\bar{b}
- una sola corrente adronica, incertezze teoriche contenute

- misura $|V_{cb}|, |V_{ub}|$:

$$\Gamma(b \to \ell \nu q) = |V_{qb}|^2 \cdot \gamma^{th}$$

$$\gamma^{th} : \text{modello } q \to adroni$$

espansione $(1/m_b, 1/m_c, \alpha_s)$

- verifica dei modelli (OPE,HQET, etc.)

 $V_{cb}|\mathbf{da} \ b \rightarrow c\ell\nu$

Misura di $\lambda_1, \bar{\Lambda}$

- Determinano la dinamica del decadimento.
- CLEO analisi indipendenti dei momenti (prel.):

$$\begin{array}{l} leptone^{a} \left\{ \begin{array}{l} < E_{\ell} > \\ < (E_{\ell} - < E_{\ell} >)^{2} > \end{array} \right\}, \ c-quark^{b} \left\{ \begin{array}{l} < M_{X_{c}}^{2} - M_{D}^{2} > \\ < (M_{X_{c}}^{2} - M_{D}^{2})^{2} > \end{array} \right\} \\ \lambda_{1} = -0.13 \pm 0.06 \ GeV^{2} \\ \bar{\Lambda} = 0.33 \pm 0.08 \ GeV \end{array} \right\} \Rightarrow \sigma(|V_{cb}|)^{th.} = \pm 2\%$$

- l'accordo e' modesto (CL $\sim 5\%$) modelli? uso "improprio"?
- lavoro per LEP !

0.2 0 -0.2 **~** -0.4 band -0.6 -(E,))²) band -0.8 1.2 0.8 1 Ā (GeV)

0.4

(GeV²)

^aVoloshin (1995) ^bFalk & co. (1996) $|V_{cb}|$ da $\bar{B_d^0} \rightarrow D^{*+} \ell \bar{\nu}$

Eccitazioni Orbitali (D^{**})

12

Risultati & Problemi

- PDG : $\mathcal{B}(B \to \ell^- X) \mathcal{B}(B \to \ell^- \nu (D + D^*)) = (3.93 \pm 0.44)\%$
- ALEPH : $\mathcal{B}(B \to \ell \nu D^{**}) = (2.16 \pm 0.42)\% (-2.9\sigma)$
- DELPHI: $\mathcal{B}(B \to \ell \nu D^{**}) = (3.40 \pm 0.60)\% (-0.7\sigma)$

 \Rightarrow B-factories,CDF ?

Produzione

	Exp.	HQET(+modelli potenziale)
$\mathcal{B}(\bar{B} \rightarrow D_1 \ell \nu)(\%)$	$0.63 {\pm} 0.11$	_
$\frac{\mathcal{B}(\bar{B} \to D_2^* \ell \nu)}{\mathcal{B}(\bar{B} \to D_1 \ell \nu)}$	0.37 ± 0.16	~ 1
$\frac{\mathcal{B}(\bar{B} \to D_1^- \ell \nu)}{\mathcal{B}(\bar{B} \to D^{**} \ell \nu)}$	0.35 ± 0.15	$\sim 0.5 \div 0.7$

 $|V_{ub}|$ da $b \rightarrow u \ell \bar{\nu}$

$|V_{ub}|$: prospettive $\bar{B} \rightarrow u \ell \bar{\nu}$

Selezione cinematica (a la LEP) : misura $\Gamma(q^2 > q_0^2)$ $q^2 = (\mathcal{P}_{\ell} + \mathcal{P}_{\bar{\nu}})^2 = (\mathcal{P}_{\bar{B}} - \mathcal{P}_{had})^2 \begin{cases} b \rightarrow c : < (M_B - M_D)^2 = 11.6 GeV^2 \\ b \rightarrow u : < (M_B - M_\pi)^2 = 20.0 GeV^2 \end{cases}$

Sperimentalmente, q^2 da:

- ermeticita' (CLEO) : $\mathcal{P}_{\nu} = \mathcal{P}_{miss}$ • statistica (BaBar,Belle): $\bar{B}B$ $\ell \bar{\nu} X_u \implies \mathcal{P}_{had} = \mathcal{P}(X_u)$
- LEP ?

Teoria^a

•
$$q^2 > 11.6 \ GeV^2 \implies \sigma^{th} \sim 10\%$$

• $q^2 > 15 \ GeV^2 \implies \sigma^{th} \sim 20\%$
• $\frac{\mathcal{B}(b \rightarrow u\ell\bar{\nu})}{\mathcal{B}(b \rightarrow X_s\ell^+\ell^-)} \implies \sigma^{th} \sim 10\%$

 $\mathcal{B}(b \rightarrow X_s\ell^+\ell^-) \sim 10^{-7}$
aBauer & co 2000

$|V_{ub}|$: prospettive da $B \rightarrow \rho(\pi) \ell \bar{\nu}$

- Dalla teoria : f.f. $(\mathcal{F}(q^2))$ e normalizzazione $(\mathcal{F}(q^2_{max}))$
- *Nessuna* simmetria (approssimata): $\begin{cases} |V_{cb}| \ HQET & \bar{B} \rightarrow D \\ \downarrow & \downarrow \\ |V_{us}| \ SU(3) & K^* \rightarrow \rho \end{cases}$
- *Cancellazione parziale* delle incertezze teoriche nel doppio rapporto^a :

 $\frac{(B \to \rho \ell \nu) / (B \to K^* \ell \ell)}{(D \to \rho \ell \bar{\nu}) / (D \to K^* \ell \bar{\nu})}$

misura	$\frac{\sigma^{th}(V_{ub})}{ V_{ub} }$
doppio rapporto	$\pm 10\%$
no $D {\rightarrow} \rho$	$\pm 20\%$
no $B {\rightarrow} K^*$	$\pm 40\%$

^aBauer & co 2000

Oscillazioni $B \iff \overline{B}$

•
$$\Delta m_d \propto |V_{td}|^2 \cdot (B_{B_d} \cdot f_d^2)$$

 $\left\{ \begin{array}{l} \Delta m_d = 0.476 \pm 0.016 \ ps^{-1} \\ \sqrt{B_{B_d}} \cdot f_d = 210 \pm 42 \ MeV \end{array} \right.$
 $\Rightarrow \frac{\sigma(|V_{td}|)}{|V_{td}|} \lesssim \pm 25\%$
• $\Delta m_s \propto |V_{ts}|^2 \cdot (B_{B_s} \cdot f_s^2) \qquad (unitarieta' \ CKM)$
• $\Delta m_d \propto |V_{ts}|^2 \cdot (B_{B_s} \cdot f_s^2) \qquad (unitarieta' \ CKM)$
• $\frac{\Delta m_d}{\Delta m_s} \simeq \frac{1}{\xi} \frac{|V_{td}|^2}{|V_{cb}|^2} \qquad \xi = \frac{\sqrt{B_{B_s}} \cdot f_s}{\sqrt{B_{B_d}} \cdot f_d} = 1.11 \pm 0.05 \ ^{a}$
• misura $\Delta m_d \ e \ \Delta m_s$:
 $\Rightarrow \frac{\sigma(|V_{td}|)}{|V_{td}|} \lesssim \pm 10\%$

17

Oscillazioni B_s

$$\left. \begin{array}{c} \Delta m_s >> \Delta m_d \\ f_s \simeq f_d/4 \end{array} \right\} \implies \text{Nessuna Osservazione}$$

Limite (inferiore) con il metodo delle Ampiezze $^{\rm a}$

$$\mathcal{P}(B_s \to \bar{B}_s)(t) \propto 1 + \cos(\Delta m_s t)$$

= 1 + $\mathcal{A} \cos(\Delta m_s t)$ $\mathcal{A} = \begin{cases} 0 \ \Delta m_s \text{ generica} \\ 1 \text{ oscillatione} \end{cases}$

Per ogni valore di Δm_s

- fit $\mathcal{A}(\Delta m_s)$
- esclusione : $\mathcal{A} + 1.645 \cdot \sigma_{\mathcal{A}} < 1$
- sensibilita' : Δm_s tale per cui $1.645 \cdot \sigma_A = 1$

^aMoser & co 1997

Limiti su Δm_s

- Autostati di massa :
 - diversa vita media $\Gamma(B^S) > \Gamma(B^L)$ - \simeq autostati di CP $\begin{cases} CP(B^S) \simeq +1 \\ CP(B^L) \simeq -1 \end{cases}$
- In prima approssimazione :

$$\Delta\Gamma \simeq \Delta m \cdot \frac{3}{2} (\frac{m_b}{m_t})^2$$

 \implies se Δm_s e' molto grande si puo' misurare $\Delta \Gamma_s$!

• Recente predizione:^a

$$y = \frac{\Delta \Gamma_s}{\Gamma_s} = (15.1 \pm 5.4) \%$$

^aHashimoto & co 1999

 $\Delta \Gamma_s$: Metodi Sperimentali

20

18

16

14 12 10

8

6

4

2

-2 -1

ALEPH

100

75

50

2

Proper Time (ps)

Combinatorial

Data

B signal

Physical B kg

Combinatoria

• Da misure di vita media: $< \tau > = \frac{\mathcal{N}^S \tau^S + \mathcal{N}^L \tau^L}{\mathcal{N}^S + \mathcal{N}^L}$

Canale	$\frac{\mathcal{N}^L}{\mathcal{N}^S}$	$< \tau >$
(a) inclusivo	1	$\frac{1}{\Gamma} \frac{1}{1-y^2}$
(b) $D_s \ell$	$\frac{\Gamma^S}{\Gamma^L}$	$\frac{1}{\Gamma} \frac{1+y^2}{1-y^2}$
(c) $D_s D_s (J/\Psi \phi)$	~ 0	$\frac{1}{\Gamma}\frac{1}{1+y} \ (=\tau^S)$

Nei campioni "misti" (a),(b) si impone $\Gamma=\Gamma(B_d)$

I campioni (c) sono 100% CP(+) (model dependent)

- Dalla misura del branching ratio $\mathcal{B}(B_s{}^S \to D_s^{(*)}D_s^{(*)})_{\tau^{\text{short}} = 1.27 \pm 0.33 \pm 0.07 \text{ ps}}$ 1. stato ~ 100% CP(+) (model dependent)
 - 2. contributo dominante a $\Delta \Gamma_s$

$$\frac{\Gamma(B_s{}^S \to D_s^{(*)} D_s^{(*)})}{\Gamma(B_s{}^S)} \simeq \frac{\Delta\Gamma}{\Gamma + \Delta\Gamma/2} = \frac{2y}{1+y}$$

 $\Delta\Gamma_s$: Limiti

Trieste, 28-Apr-2000

Franco Simonetto

Oscillazioni: prospettive

Required luminosity (fb⁻¹)

0.9

0.8

0.7

0.6

0.5

0.4 0.3

0.2 0.1

0

CDF B⁰_s Mixing

5σ Observation

20

S/B = 1:2

S/B = 2:1

40

huhuhuhu

60 x_s

CDF RUN II :

- $\int \mathcal{L} dt$
- PID : aggiunto TOF per K/π
- μ -vertice 3-D

 Δm_s : canale "d'oro" $B_s \rightarrow D_s \pi$:

- $\sigma(vtx) \sim 50 \text{ fs}$
- $x_s = \frac{\Delta m_s}{\Gamma_s} \Rightarrow 30 \sim \text{pochi mesi}$
- $x_s = \frac{\Delta m_s}{\Gamma_s} \Rightarrow 60 \text{ possibile (SM < 30)}$

 $\Delta\Gamma_s$: canale CP(+) $B_s \rightarrow J/\Psi\phi$:

• analisi angolare (% CP(-)) (\Rightarrow model independent)

- $\sigma(y) = 0.065(2 \ fb^{-1} \ CDF)$
- $\sigma(y) = 0.020(2 \ fb^{-1} \ BTEV)$

Vincoli sui lati di CKM

Trieste, 28-Apr-2000

Franco Simonetto

Evoluzione di CKM

Trieste, 28-Apr-2000

Franco Simonetto